ata Acquisition Toolbox™

MATLAB&SIMULINK

zzzzzz ¢)L MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Data Acquisition Toolbox™ User's Guide
© COPYRIGHT 2005-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

May 1999
November 2000
June 2001

July 2002

June 2004
October 2004
March 2005
September 2005
October 2005
November 2005
March 2006
September 2006
March 2007
May 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020

First printing
Second printing
Third printing
Online only
Online only
Online only
Online only
Online only
Reprint
Online only
Fourth printing
Online only
Online only
Fifth printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online Only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1

Revised for Version 2 (Release 12)
Revised for Version 2.1 (Release 12.1)
Revised for Version 2.2 (Release 13)
Revised for Version 2.5 (Release 14)
Revised for Version 2.5.1 (Release 14SP1)
Revised for Version 2.6 (Release 14SP2)
Revised for Version 2.7 (Release 14SP3)
Version 2.1 (Notice updated)

Revised for Version 2.8 (Release 14SP3+)
Revised for Version 2.8.1 (Release 2006a)
Revised for Version 2.9 (Release 2006b)
Revised for Version 2.10 (Release 2007a)
Minor revision for Version 2.10

Revised for Version 2.11 (Release 2007b)
Revised for Version 2.12 (Release 2008a)
Revised for Version 2.13 (Release 2008b)
Revised for Version 2.14 (Release 2009a)
Revised for Version 2.15 (Release 2009b)
Revised for Version 2.16 (Release 2010a)
Revised for Version 2.17 (Release 2010b)
Revised for Version 2.18 (Release 2011a)
Revised for Version 3.0 (Release 2011b)
Revised for Version 3.1 (Release 2012a)
Revised for Version 3.2 (Release 2012b)
Revised for Version 3.3 (Release 2013a)
Revised for Version 3.4 (Release 2013b)
Revised for Version 3.5 (Release 2014a)
Revised Version 3.6 (Release 2014b)
Revised for Version 3.7 (R2015a)

Revised for Version 3.8 (Release 2015b)
Revised for Version 3.9 (Release 2016a)
Revised for Version 3.10 (Release 2016b)
Revised for Version 3.11 (Release 2017a)
Revised for Version 3.12 (Release 2017b)
Revised for Version 3.13 (Release 2018a)
Revised for Version 3.14 (Release 2018b)
Revised for Version 4.0 (Release 2019a)
Revised for Version 4.0.1 (Release 2019b)
Revised for Version 4.1 (Release 2020a)

Contents

Introduction to Data Acquisition

1]

Data Acquisition Toolbox Product Description 1-2
Product Capabilities 1-3
Understanding Data Acquisition Toolbox 1-3
Supported Hardware 1-3
Anatomy of a Data Acquisition Experiment 1-4
System Setup 1-4
Calibration e 1-4
Trials .« o e 1-4
Data Acquisition System 1-5
OVETVIEW . .ttt e e e 1-5
Data Acquisition Hardware 1-6
SEMSOTS . .t 1-7
Signal Conditioning 1-9
The Computer e 1-11
Software 1-11
Analog Input Subsystem 1-13
Function of the Analog Input Subsystem 1-13
Sampling 1-13
Quantization e 1-15
Channel Configuration i, 1-18
Transferring Data from Hardware to System Memory 1-20
Making Quality Measurements 1-22
What Do You Measure? 1-22
Accuracy and Precision 1-22
NOISE . .ot 1-25
Matching the Sensor Range and A/D Converter Range 1-25
How Fast Should a Signal Be Sampled? 1-26
Selected Bibliography 1-29

2|

Installation Information 2-2
Prerequisites 2-2
Toolbox Installation e 2-2

vi

Contents

Hardware and Driver Installation 2-2

Access Your Hardware i 2-3
Connectto Your Hardware 2-3
Examine Your Hardware Resourcesc0 .. 2-3
Acquire AudioData 2-4
Generate AudioData 2-4
Acquire and Generate Digital Data 2-5

Introduction to the DataAcquisition Interface

The DataAcquisition Object 3-2

Get Command-LineHelp 3-3

Using the DataAcquisition Interface

4

Interface Workflow 4-2
Working a DataAcquisition i 4-2
DataAcquisition Interface and Data Acquisition Toolbox 4-2

Digital Inputand OQutput 4-3

Discover Hardware Devices i, 4-4

Create a DataAcquisition Interface 4-5

Support Package Installer

S|

Install Hardware Support Package for Vendor Support 5-2
Install Support Packagesco i 5-2
Update or Uninstall Support Packages 5-2

6|

Acquire Data in the Foreground 6-2

Acquire Data from Multiple Channels 6-3

Acquire Data in the Background 6-4

Acquire Bridge Measurements 6-5
Acquire Sound Pressure Data 6-7
Acquire IEPEData e 6-9
Generate Signals in the Foreground 6-11
Generate Signals on Multiple Channels 6-12
Generate Signals in the Background 6-13
Generate Signals in the Background Continuously 6-14
Acquire Data and Generate Signals Simultaneously 6-16
Acquire Data with the Analog Input Recorder 6-17
Generate Signals with the Analog Output Generator 6-21

Analog Devices Active Learning Module

7

Analog Devices ADALM1000 Hardware 7-2
Generate and Measure Signals with Analog Devices ADALM1000 7-3
Updated Function Syntax 7-3
Source Voltage and Measure Currentc.... 7-3
Generatea Pulse i 7-4
Generate Waveformst 7-5

8|

Analog and Digital Counters 8-2

Acquire CounterInputData 8-3
Add Counter Input Channel 8-3
Acquire a Single Count 8-3
Acquire a Single Frequency Count, 8-14
Acquire Counter Input Data in the Foreground 8-4

Generate Pulse Data on a Counter Channel 8-6
Add Counter Output Channels 8-6
Generate Pulses on a Counter Output Channel 8-6

Digital Operations

9

Digital Subsystem Channels 9-2
Digital Clocked Operations 9-2
Access Digital Subsystem Information 9-3

Acquire Non-Clocked Digital Data 9-4

Acquire Digital Data Using a SharedClock 9-5

Acquire Digital Data Using an External Clock 9-6

Acquire Digital Data Using a Counter Output Channel as External Clock

.. 9-8

Generate a Clock Using a Counter Output Channel 9-8

Use Counter Clock to Acquire Clocked Digital Data 9-9
Acquire Digital Data Using an External Clock via Chassis PFI Terminal

... 9-11

Acquire Digital Data in Hexadecimal Values 9-12

Generate Non-Clocked Digital Data 9-13

Generate Digital Output Using Decimal Data Across Multiple Lines ... 9-14

Generate and Acquire Data on Bidirectional Channels 9-15

Generate Signals on Both Analog and Digital Channels 9-16

Multichannel Audio

Audio Inputand Output 10-2
Multichannel Audio ScanRate i, 10-2
Audio Measurement Range i, 10-2
Acquire AudioData 10-2

11|

Digilent Analog Discovery Devices 11-2
Digilent Function Waveform Generator Channels 11-3
Waveform Types i e 11-5

viii Contents

Generate a Standard Waveform Using Function Waveform Generator
Channels 11-8

12

13

Trigger Connections 12-2
When to Use Triggerso oottt et et e 12-2
External Triggeringt e 12-2

Acquire Voltage Data Using a Digital Trigger 12-4

Clock Connections it 12-5
WhentoUse Clocks e 12-5
Import Scan Clock from External Source 12-5
Export Scan Clock to External System 12-5

Synchronization

Synchronization 13-2
Shared Triggers and Shared Scan Clocks 13-2
Source and Destination Devices i 13-3
Automatic Synchronization 13-4
Synchronization Scenarios i 13-4

Multiple-Device Synchronization Using USB or PXI Devices 13-7
Acquire Synchronized Data Using USB Devices 13-7
Synchronize Counter Outputs from Multiple Devices 13-8
Synchronize DSA PXI Devices Using AutoSyncDSA 13-8
Acquire Synchronized Data Using PXI Devices 13-9

Synchronize with PFI on CompactDAQ Chassis Without Terminals . . . 13-11

Multiple-Chassis Synchronization with CompactDAQ Devices 13-12

Synchronize DSA Devices 13-13
PXIDSADEVICESo 13-13
Hardware Restrictions i, 13-13
PCIDSADEVICES . . v e 13-15
Synchronize DSA PCIDEVICES . ..o e i 13-15
Handle Filter Delays with DSADevices 13-15

ix

X

Contents

Transition Your Code to New Interfaces

14

Transition Your Code from Session to DataAcquisition Interface 14-2
Transition Common Workflow Commands 14-2
Acquire Analog Data i 14-3
USE TIiggeTS .« o v v vt ettt e e e e e e e 14-3
Initiate an Operation When Number of Scans Exceeds Specified Value

... 14-4
Analog Output Generator Codeottt 14-5
Functions

Apps

Blocks

17|

Troubleshooting Your Hardware

A

Troubleshooting Tips A-2
Find Devices and Create a DataAcquisition Interface A-2
Is My NI-DAQ Driver Supported? A-3
Why Doesn’t My NI Hardware Work? A-3
Why Was My DataAcquisition Deleted? A-4
Cannot Find Hardware Vendor it iiinn. .. A-4
Cannot Find Devicest e e A-4
What Is a Reserved Hardware Error? A-5
Network Device Appears Unsupported A-5
ADC Overrun Error with External Clock A-6
Cannot Add Clock Connection to PXI Devices A-6
Cannot Complete Long Foreground Acquisition A-6
Cannot Use PXI 4461 and 4462 Together A-6
Cannot Get Correct Scan Rate with Digilent Devices A-6
Cannot Simultaneously Acquire and Generate with myDAQ Devices A-6
Simultaneous Analog Input and Output Not Synchronized Correctly A-7
Counter Single Scan Returns NaN A-7
External Clock Will Not Trigger Scan A-7
Why Does My S/PDIF Device Time Out? A-7

MOTU Device Not Working Correctly A-7

Contact MathWorks for Technical Support A-8

Hardware Limitations by Vendor

Limitations by Vendor B-2
National Instruments Hardware Limitations B-3
Digilent Analog Discovery Hardware Limitations B-4
Measurement Computing Hardware Limitations B-5
Analog Devices ADALM1000 Limitations B-6
Examples by Vendor B-7
Analog Devices ADALM1000 Examples B-8
Digilent Analog Discovery Hardware Examples B-9
Measurement Computing Hardware Examples B-10
National Instruments Hardware Examples B-11
Getting Started and Device Discoveryc..cvvnn... B-11
Analog Inputand OQutput B-11
Digital Inputand Output i B-11
Counters and Timerso ittt e B-11
Simultaneous and Synchronized Operations B-12
Simulink Data Acquisition B-12
Windows Sound Card Examples B-13

xi

Introduction to Data Acquisition

* “Data Acquisition Toolbox Product Description” on page 1-2
* “Product Capabilities” on page 1-3

* “Anatomy of a Data Acquisition Experiment” on page 1-4

» “Data Acquisition System” on page 1-5

* “Analog Input Subsystem” on page 1-13

* “Making Quality Measurements” on page 1-22

» “Selected Bibliography” on page 1-29

1

Introduction to Data Acquisition

Data Acquisition Toolbox Product Description

1-2

Connect to data acquisition cards, devices, and modules

Data Acquisition Toolbox provides apps and functions for configuring data acquisition hardware,
reading data into MATLAB® and Simulink®, and writing data to DAQ analog and digital output
channels. The toolbox supports a variety of DAQ hardware, including USB, PCI, PCI Express®, PXI®,
and PXI-Express devices, from National Instruments® and other vendors.

The toolbox apps let you interactively set up a data acquisition interface and configure it to your
hardware. You can then generate equivalent MATLAB code to automate your data acquisition.
Toolbox functions give you the flexibility to control the analog input, analog output, counter/timer,
and digital I/O subsystems of a DAQ device. You can access device-specific features and synchronize
data acquired from multiple devices.

You can analyze data as you acquire it or save it for post-processing. You can also automate tests and
make iterative updates to your test setup based on analysis results.

Product Capabilities

Product Capabilities

In this section...

“Understanding Data Acquisition Toolbox” on page 1-3

“Supported Hardware” on page 1-3

Understanding Data Acquisition Toolbox

Data Acquisition Toolbox enables you to:

» Configure external hardware devices.
* Read data into MATLAB for immediate analysis.
* Generate signals on device output channels.

Data Acquisition Toolbox is a collection of functions, blocks, apps, and a MEX-file (shared library)
built on the MATLAB technical computing environment. The toolbox and its support packages also
provide several dynamic link libraries (DLLs) called adaptors, which enable you to interface with
specific hardware. The toolbox provides you with these main features:

* A framework for bringing live, measured data into the MATLAB workspace using PC-compatible,
plug-in data acquisition hardware

» Support for analog input (AI), analog output (AO), and digital I/O (DIO) subsystems, including
simultaneous analog I/O conversions

* Support for these popular hardware vendors/devices:

* National Instruments CompactDAQ chassis
* National Instruments boards that use NI-DAQmzx software
* Microsoft® Windows® sound cards
 Digilent® Analog Discovery™ hardware
* Measurement Computing™ hardware
» Analog Devices® ADALM1000
* Measurement Computingdevices
» Event-driven acquisitions

Supported Hardware
The list of hardware supported by Data Acquisition Toolbox can change in each release.

To see the full list of hardware that the toolbox supports, visit the supported hardware page at
https://www.mathworks.com/hardware-support/data-acquistion-software.html.

1-3

https://www.mathworks.com/hardware-support/data-acquistion-software.html

1

Introduction to Data Acquisition

Anatomy of a Data Acquisition Experiment

1-4

In this section...

“System Setup” on page 1-4
“Calibration” on page 1-4

“Trials” on page 1-4

System Setup

The first step in any data acquisition experiment is to install the hardware and software. Hardware
installation consists of plugging a board into your computer or installing modules into an external
chassis. Software installation consists of loading hardware drivers and application software onto your
computer. After the hardware and software are installed, you can attach your sensors.

Calibration

After the hardware and software are installed and the sensors are connected, the data acquisition
hardware should be calibrated. Calibration consists of providing a known input to the system and
recording the output. For many data acquisition devices, calibration can be easily accomplished with
software provided by the vendor.

Trials

After the hardware is set up and calibrated, you can begin to acquire data. You might think that if you
completely understand the characteristics of the signal you are measuring, then you should be able to
configure your data acquisition system and acquire the data.

However, your sensor might be picking up unacceptable noise levels and require shielding, or you
might need to run the device at a higher rate, or perhaps you need to add an antialias filter to remove
unwanted frequency components.

These effects act as obstacles between you and a precise, accurate measurement. To overcome these
obstacles, you need to experiment with different hardware and software configurations. In other
words, you need to perform multiple data acquisition trials.

Data Acquisition System

Data Acquisition System

In this section...

“Overview” on page 1-5

“Data Acquisition Hardware” on page 1-6
“Sensors” on page 1-7

“Signal Conditioning” on page 1-9

“The Computer” on page 1-11

“Software” on page 1-11

Overview

Data Acquisition Toolbox, with the MATLAB technical computing environment, gives you the ability to
generate, measure. and analyze physical phenomena. The purpose of any data acquisition system is
to provide you with the tools and resources to do this.

You can think of a data acquisition system as a collection of software and hardware that connects
your program to the physical world. A typical data acquisition system consists of these components:

Components Description
Data acquisition At the heart of any data acquisition system lies the data acquisition
hardware hardware. The main function of this hardware is to convert analog signals

to digital signals, and to convert digital signals to analog signals.

Sensors and actuators |Sensors and actuators are types of transducers. A transducer is a device
(transducers) that converts input energy of one form into output energy of another
form. For example, a microphone is a sensor that converts sound energy
(in the form of pressure) into electrical energy, while a loudspeaker is an
actuator that converts electrical energy into sound energy.

Signal conditioning Sensor signals are often incompatible with data acquisition hardware. To
hardware overcome this incompatibility, the signal must be conditioned. For
example, you might need to condition an input signal by amplifying it or
by removing unwanted frequency components. Output signals might need
conditioning as well.

Computer The computer provides a processor, a system clock, a bus to transfer data,
and memory and disk space to store data.

Software Data acquisition software allows you to exchange information between the
computer and the hardware. For example, typical software allows you to
configure the sampling rate of your board, and acquire a predefined
amount of data.

The following diagram illustrates the data acquisition components, and their relationships to each
other.

1-5

https://www.mathworks.com/discovery/data-acquisition-system.html

1 introduction to Data Acquisition

Fhysical
phenomena
Data Acquisition System
r-r- —-——————"—"—"—"— " — - - — — — — — — — q
I I
| g Signal |
| snsor “leonditioning |
Acguisition > > .
| hardwara Computer Software |
I
: Actuator]— |
I I
Lo A - - L _ 1
W
Data
analysis
Fhwsical
phenomena

The figure depicts the two important features of a data acquisition system:

* Signals are input to a sensor, conditioned, converted into bits that a computer can read, and
analyzed to extract meaningful information.

For example, sound level data is acquired from a microphone, amplified, digitized by a sound card,
and stored in the MATLAB workspace for subsequent analysis of frequency content.

* Data from a computer is converted into an analog signal and output to an actuator.

For example, a vector of data in the MATLAB workspace is converted to an analog signal by a
sound card and output to a loudspeaker.

Data Acquisition Hardware

Data acquisition hardware is either internal and installed directly into an expansion slot inside your
computer, or external and connected to your computer through an external cable, which is typically a
USB cable.

At the simplest level, data acquisition hardware is characterized by the subsystems that comprise it.
A subsystem is a component of your data acquisition hardware that performs a specialized task.
Common subsystems include

* Analog input

* Analog output

» Digital input/output

* Counter/timer

Hardware devices that consist of multiple subsystems, such as the one depicted below, are called
multifunction boards.

1-6

Data Acquisition System

Analoginput Analog output
subsystem subsystem
Digital I/O Counter/timer
subsystem subsystem

Analog Input Subsystems

Analog input subsystems convert real-world analog input signals from a sensor into bits that can be
read by your computer. Perhaps the most common of all subsystems, they are typically available in
multichannel devices offering 12 or 16 bits of resolution.

Analog input subsystems are also referred to as Al subsystems, A/D converters, or ADCs.
Analog Output Subsystems

Analog output subsystems convert digital data stored on your computer to a real-world analog signal.
These subsystems perform the inverse conversion of analog input subsystems. Typical acquisition
boards offer two output channels with 12 bits of resolution, with special hardware available to
support multiple channel analog output operations.

Analog output subsystems are also referred to as AO subsystems, D/A converters, or DACs.
Digital Input/Output Subsystems

Digital input/output (DIO) subsystems are designed to input and output digital values (logic levels) to
and from hardware. These values are typically handled either as single bits or lines, or as a port,
which typically consists of eight lines.

While most popular data acquisition cards include some digital I/O capability, it is usually limited to
simple operations. Special dedicated hardware is often necessary for performing advanced digital I/O
operations.

Counter/Timer Subsystems

Counter/timer (C/T) subsystems are used for event counting, frequency and period measurement, and
pulse train generation.

Sensors

A sensor converts the physical phenomena of interest into signals that are input to your data
acquisition hardware. There are two main types of sensors based on the output they produce: digital
sensors and analog sensors.

Digital sensors produce an output signal that is a digital representation of the input signal, and has
discrete values of magnitude measured at discrete times. A digital sensor must output logic levels
that are compatible with the digital receiver. Some standard logic levels include transistor-transistor
logic (TTL) and emitter-coupled logic (ECL). Examples of digital sensors include switches and position
encoders.

1-7

1

Introduction to Data Acquisition

1-8

Analog sensors produce an output signal that is directly proportional to the input signal, and is
continuous in both magnitude and time. Most physical variables such as temperature, pressure, and
acceleration are continuous in nature and are readily measured with an analog sensor. For example,
the temperature of an automobile cooling system and the acceleration produced by a child on a swing
both vary continuously.

The sensor you use depends on the phenomena you are measuring. Some common analog sensors
and the physical variables they measure are listed below.

Common Analog Sensors

Sensor Physical Variable
Accelerometer Acceleration
Microphone Pressure

Pressure gauge Pressure

Resistive temperature device (RTD) Temperature
Strain gauge Force
Thermocouple Temperature

When choosing the best analog sensor to use, you must match the characteristics of the physical
variable you are measuring with the characteristics of the sensor. The two most important sensor
characteristics are:

* The sensor output
* The sensor bandwidth

Note You can use thermocouples and accelerometers without performing linear conversions.

Sensor Output

The output from a sensor can be an analog signal or a digital signal, and the output variable is usually
a voltage although some sensors output current.

Current Signals

Current is often used to transmit signals in noisy environments because it is much less affected by
environmental noise. The full scale range of the current signal is often either 4-20 mA or 0-20 mA. A
4-20 mA signal has the advantage that even at minimum signal value, there should be a detectable
current flowing. The absence of this indicates a wiring problem.

Voltage Signals

The most commonly interfaced signal is a voltage signal. For example, thermocouples, strain gauges,
and accelerometers all produce voltage signals. There are three major aspects of a voltage signal that
you need to consider:

* Amplitude

If the signal is less than a few millivolts, you might need to amplify it. If it is greater than the
maximum range of your analog input hardware (typically =10 V), you must divide the signal down
using a resistor network.

Data Acquisition System

The amplitude is related to the sensitivity (resolution) of your hardware. Refer to Accuracy and
Precision on page 1-22 for more information about hardware sensitivity.

* Frequency
Whenever you acquire data, you should decide the highest frequency you want to measure.

The highest frequency component of the signal determines how often you should sample the input.
If you have more than one input, but only one analog input subsystem, then the overall sampling
rate goes up in proportion to the number of inputs. Higher frequencies might be present as noise,
which you can remove by filtering the signal before it is digitized.

If you sample the input signal at least twice as fast as the highest frequency component, then that
signal will be uniquely characterized. However, this rate might not mimic the waveform very
closely. For a rapidly varying signal, you might need a sampling rate of roughly 10 to 20 times the
highest frequency to get an accurate picture of the waveform. For slowly varying signals, you need
only consider the minimum time for a significant change in the signal.

The frequency is related to the bandwidth of your measurement. Bandwidth is discussed in
“Sensor Bandwidth” on page 1-9.

* Duration

How long do you want to sample the signal for? If you are storing data to memory or to a disk file,
then the duration determines the storage resources required. The format of the stored data also
affects the amount of storage space required. For example, data stored in ASCII format takes
more space than data stored in binary format.

Sensor Bandwidth

In a real-world data acquisition experiment, the physical phenomena you are measuring have
expected limits. For example, the temperature of your automobile's cooling system varies
continuously between its low limit and high limit. The temperature limits, as well as how rapidly the
temperature varies between the limits, depends on several factors including your driving habits, the
weather, and the condition of the cooling system. The expected limits might be readily approximated,
but there are an infinite number of possible temperatures that you can measure at a given time. As
explained in Quantization on page 1-15, these unlimited possibilities are mapped to a finite set of
values by your data acquisition hardware.

The bandwidth is given by the range of frequencies present in the signal being measured. You can
also think of bandwidth as being related to the rate of change of the signal. A slowly varying signal
has a low bandwidth, while a rapidly varying signal has a high bandwidth. To properly measure the
physical phenomena of interest, the sensor bandwidth must be compatible with the measurement
bandwidth.

You might want to use sensors with the widest possible bandwidth when making any physical
measurement. This is the one way to ensure that the basic measurement system is capable of
responding linearly over the full range of interest. However, the wider the bandwidth of the sensor,
the more you must be concerned with eliminating sensor response to unwanted frequency
components.

Signal Conditioning

Sensor signals are often incompatible with data acquisition hardware. To overcome this
incompatibility, the sensor signal must be conditioned. The type of signal conditioning required

1-9

1 introduction to Data Acquisition

1-10

depends on the sensor you are using. For example, a signal might have a small amplitude and require
amplification, or it might contain unwanted frequency components and require filtering. Common
ways to condition signals include

* Amplification

* Filtering

» Electrical isolation
* Multiplexing

» Excitation source

Amplification

Low-level - less than approximately 100 millivolts - usually need to be amplified. High-level signals
might also require amplification depending on the input range of the analog input subsystem.

For example, the output signal from a thermocouple is small and must be amplified before it is
digitized. Signal amplification allows you to reduce noise and to make use of the full range of your
hardware thereby increasing the resolution of the measurement.

Filtering

Filtering removes unwanted noise from the signal of interest. A noise filter is used on slowly varying
signals such as temperature to attenuate higher frequency signals that can reduce the accuracy of
your measurement.

Rapidly varying signals such as vibration often require a different type of filter known as an
antialiasing filter. An antialiasing filter removes undesirable higher frequencies that might lead to
erroneous measurements.

Electrical Isolation

If the signal of interest contains high-voltage transients that could damage the computer, then the
sensor signals should be electrically isolated from the computer for safety purposes.

You can also use electrical isolation to make sure that the readings from the data acquisition
hardware are not affected by differences in ground potentials. For example, when the hardware
device and the sensor signal are each referenced to separate grounds, problems occur if there is a
potential difference between the two grounds. This difference can lead to a ground loop, which might
cause erroneous measurements. Using electrically isolated signal conditioning modules eliminates
the ground loop and ensures that the signals are accurately represented.

Multiplexing
A common technique for measuring several signals with a single measuring device is multiplexing.

Signal conditioning devices for analog signals often provide multiplexing for use with slowly changing
signals such as temperature. This is in addition to any built-in multiplexing on the DAQ board. The
A/D converter samples one channel, switches to the next channel and samples it, switches to the next
channel, and so on. Because the same A/D converter is sampling many channels, the effective
sampling rate of each individual channel is inversely proportional to the number of channels sampled.

You must take care when using multiplexers so that the switched signal has sufficient time to settle.
Refer to Noise on page 1-25 for more information about settling time.

Data Acquisition System

Excitation Source

Some sensors require an excitation source to operate. For example, strain gauges and resistive
temperature devices (RTDs) require external voltage or current excitation. Signal conditioning
modules for these sensors usually provide the necessary excitation. RTD measurements are usually
made with a current source that converts the variation in resistance to a measurable voltage.

The Computer

The computer provides a processor, a system clock, a bus to transfer data, and memory and disk
space to store data.

The processor controls how fast data is accepted by the converter. The system clock provides time
information about the acquired data. Knowing that you recorded a sensor reading is generally not
enough. You might also need to know when that measurement occurred.

Data is transferred from the hardware to system memory via dynamic memory access (DMA) or
interrupts. DMA is hardware controlled and therefore extremely fast. Interrupts might be slow
because of the latency time between when a board requests interrupt servicing and when the
computer responds. The maximum acquisition rate is also determined by the computer's bus
architecture. Refer to How Are Acquired Samples Clocked? on page 1-17 for more information about
DMA and interrupts.

Software

Regardless of the hardware you are using, you must send information to the hardware and receive
information from the hardware. You send configuration information to the hardware such as the
sampling rate, and receive information from the hardware such as data, status messages, and error
messages. You might also need to supply the hardware with information so that you can integrate it
with other hardware and with computer resources. This information exchange is accomplished with
software.

There are two kinds of software:

* Driver software
» Application software

For example, suppose you are using Data Acquisition Toolbox software with a National Instruments
board and its associated driver. The following diagram shows the relationship between you, the driver
software, and the application software.

1-11

1 introduction to Data Acquisition

1-12

User Tou
Application Data Acqusttion Toolbox software &
software MATLAPR techrical computing enwironment
Driver
software NI-DAQ

Hardware Mational Instruments
AT-WIO-16E-1 hoard

The diagram illustrates that you supply information to the hardware, and you receive information
from the hardware.

Driver Software

For a data acquisition device, there is associated driver software that you must use. Driver software
allows you to access and control your hardware. Among other things, basic driver software allows you

to

Transfer data to and from the board
Control the rate at which data is acquired

Integrate the data acquisition hardware with computer resources such as processor interrupts,
DMA, and memory

Integrate the data acquisition hardware with signal conditioning hardware
Access multiple subsystems on a given data acquisition board

Access multiple data acquisition boards

Application Software

Application software provides a convenient front end to the driver software. Basic application
software allows you to

Report relevant information such as the number of samples acquired
Generate events

Manage the data stored in computer memory

Condition a signal

Plot acquired data

MATLAB and Data Acquisition Toolbox software provide you with these capabilities, and provide tools
that let you perform analysis on the data.

Analog Input Subsystem

Analog Input Subsystem

In this section...

“Function of the Analog Input Subsystem” on page 1-13

“Sampling” on page 1-13

“Quantization” on page 1-15

“Channel Configuration” on page 1-18

“Transferring Data from Hardware to System Memory” on page 1-20

Function of the Analog Input Subsystem

Many data acquisition hardware devices contain one or more subsystems that convert (digitize) real-
world sensor signals into numbers your computer can read. Such devices are called analog input
subsystems (Al subsystems, A/D converters, or ADCs). After the real-world signal is digitized, you can
analyze it, store it in system memory, or store it to a disk file.

The function of the analog input subsystem is to sample and quantize the analog signal using one or
more channels. You can think of a channel as a path through which the sensor signal travels. Typical
analog input subsystems have eight or 16 input channels available to you. After data is sampled and
quantized, it must be transferred to system memory.

Analog signals are continuous in time and in amplitude (within predefined limits). Sampling takes a
“snapshot” of the signal at discrete times, while quantization divides the voltage (or current) value
into discrete amplitudes.

Sampling

Sampling takes a snapshot of the sensor signal at discrete times. For most applications, the time
interval between samples is kept constant (for example, sample every millisecond) unless externally
clocked.

For most digital converters, sampling is performed by a sample and hold (S/H) circuit. An S/H circuit
usually consists of a signal buffer followed by an electronic switch connected to a capacitor. The
operation of an S/H circuit follows these steps:

At a given sampling instant, the switch connects the buffer and capacitor to an input.

The capacitor is charged to the input voltage.

The charge is held until the A/D converter digitizes the signal.

For multiple channels connected (multiplexed) to one A/D converter, the previous steps are
repeated for each input channel.

D W N R

5 The entire process is repeated for the next sampling instant.
A multiplexer, S/H circuit, and A/D converter are illustrated in the next section.

Hardware can be divided into two main categories based on how signals are sampled: scanning
hardware, which samples input signals sequentially, and simultaneous sample and hold (SS/H)
hardware, which samples all signals at the same time. These two types of hardware are discussed
below.

1-13

1 introduction to Data Acquisition

1-14

Scanning Hardware

Scanning hardware samples a single input signal, converts that signal to a digital value, and then
repeats the process for every input channel used. In other words, each input channel is sampled
sequentially. A scan occurs when each input in a group is sampled once.

As shown below, most data acquisition devices have one A/D converter that is multiplexed to multiple
input channels.

Signal buffer Amplifier | A/D converter
|

L;L«l:chych

Input Multiplexer Sample and hold cirenit
channels

Therefore, if you use multiple channels, those channels cannot be sampled simultaneously and a time
gap exists between consecutive sampled channels. This time gap is called the channel skew. You can
think of the channel skew as the time it takes the analog input subsystem to sample a single channel.

Additionally, the maximum sampling rate your hardware is rated at typically applies for one channel.
Therefore, the maximum sampling rate per channel is given by the formula:

maximumboardrate

maximumsamplingrateperchannel =
piing p numberofchannelsscanned

Typically, you can achieve this maximum rate only under ideal conditions. In practice, the sampling
rate depends on several characteristics of the analog input subsystem including the settling time and
the gain, as well as the channel skew. The sample period and channel skew for a multichannel
configuration using scanning hardware is shown bhelow.

4 Group Group Group
scan 1 scan 2 scann
L ko i
o o o
L]
o ke o k)
E @ o
] o o
o] o
L . _ ! L _
Sample period Channel skew
B

Time

If you cannot tolerate channel skew in your application, you must use hardware that allows
simultaneous sampling of all channels. Simultaneous sample and hold hardware is discussed in the
next section.

Analog Input Subsystem

Simultaneous Sample and Hold Hardware

Simultaneous sample and hold (SS/H) hardware samples all input signals at the same time and holds
the values until the A/D converter digitizes all the signals. For high-end systems, there can be a
separate A/D converter for each input channel.

For example, suppose you need to simultaneously measure the acceleration of multiple
accelerometers to determine the vibration of some device under test. To do this, you must use SS/H
hardware because it does not have a channel skew. In general, you might need to use SS/H hardware
if your sensor signal changes significantly in a time that is less than the channel skew, or if you need
to use a transfer function or perform a frequency domain correlation.

The sample period for a multichannel configuration using SS/H hardware is shown below. Note that
there is no channel skew.

4 Group Group Group
scan 1 scan 2 scann
_D N _‘:' N _D N
o o =
- =) o =
i
E i ful =}
@] @ o o
(=] o) o
- _ L - L _
Sample period
»
Time
Quantization

As discussed in the previous section, sampling takes a snapshot of the input signal at an instant of
time. When the snapshot is taken, the sampled analog signal must be converted from a voltage value
to a binary number that the computer can read. The conversion from an infinitely precise amplitude
to a binary number is called quantization.

During quantization, the A/D converter uses a finite number of evenly spaced values to represent the
analog signal. The number of different values is determined by the number of bits used for the
conversion. Most modern converters use 12 or 16 bits. Typically, the converter selects the digital
value that is closest to the actual sampled value.

The figure below shows a 1 Hz sine wave quantized by a 3 bit A/D converter.

1-15

1 introduction to Data Acquisition

The number of quantized values is given by 23 = 8, the largest representable value is given by 111 =
22 + 214+ 20 = 7.0, and the smallest representable value is given by 000 = 0.0.

Quantization Error

There is always some error associated with the quantization of a continuous signal. Ideally, the
maximum quantization error is 0.5 least significant bits (LSBs), and over the full input range, the
average quantization error is zero.

As shown below, the quantization error for the previous sine wave is calculated by subtracting the
actual signal from the quantized signal.

15 T T T T T T T T T

(=]
i
T

NS

T L

=]

Cuantization arraor {bits)

b
i

s i i i i i i i i i
Q R 0z 03 04 0.5 0.6 a7 03 0g 1
Time [sac.)

Input Range and Polarity

The input range of the analog input subsystem is the span of input values for which a conversion is
valid. You can change the input range by selecting a different gain value. For example, National

1-16

Analog Input Subsystem

Instruments' AT-MIO-16E-1 board has eight gain values ranging from 0.5 to 100. Many boards include
a programmable gain amplifier that allows you to change the device gain through software.

When an input signal exceeds the valid input range of the converter, an overrange condition occurs.
In this case, most devices saturate to the largest representable value, and the converted data is
almost definitely incorrect. The gain setting affects the precision of your measurement — the higher
(lower) the gain value, the lower (higher) the precision. Refer to How Are Range, Gain, and
Measurement Precision Related? on page 1-24 for more information about how input range, gain,
and precision are related to each other.

An analog input subsystem can typically convert both unipolar signals and bipolar signals. A unipolar
signal contains only positive values and zero, while a bipolar signal contains positive values, negative
values, and zero.

Unipolar and bipolar signals are depicted below. Refer to the figure in “Quantization” on page 1-15
for an example of a unipolar signal.

10 Volts Z{\;
5 Volts /
0 Volts A‘
-5 Volts
Unipolar Bipolar Unipolar

In many cases, the signal polarity is a fixed characteristic of the sensor and you must configure the
input range to match this polarity.

As you can see, it is crucial to understand the range of signals expected from your sensor so that you
can configure the input range of the analog input subsystem to maximize resolution and minimize the
chance of an overrange condition.

How Are Acquired Samples Clocked?

Samples are acquired from an analog input subsystem at a specific rate by a clock. Like any timing
system, data acquisition clocks are characterized their resolution and accuracy. Timing resolution is
defined as the smallest time interval that you can accurately measure. The timing accuracy is affected
by clock jitter. Jitter arises when a clock produces slightly different values for a given time interval.

For any data acquisition system, there are typically three clock sources that you can use: the onboard
data acquisition clock, the computer clock, or an external clock. Data Acquisition Toolbox software
supports all of these clock sources, depending on the requirements of your hardware.

Onboard Clock

The onboard clock is typically a timer chip on the hardware board that is programmed to generate a
pulse stream at the desired rate. The onboard clock generally has high accuracy and low jitter
compared to the computer clock. You should always use the onboard clock when the sampling rate is
high, and when you require a fixed time interval between samples. The onboard clock is referred to
as the internal clock in this guide.

1-17

1 introduction to Data Acquisition

1-18

Computer Clock

The computer (PC) clock is used for boards that do not possess an onboard clock. The computer clock
is less accurate and has more jitter than the onboard clock, and is generally limited to sampling rates
below 500 Hz. The computer clock is referred to as the software clock in this guide.

External Clock

An external clock is often used when the sampling rate is low and not constant. For example, an
external clock source is often used in automotive applications where samples are acquired as a
function of crank angle.

Channel Configuration

You can configure input channels in one of these two ways:

» Differential
* Single-ended

Your choice of input channel configuration might depend on whether the input signal is floating or
grounded.

A floating signal uses an isolated ground reference and is not connected to the building ground. As a
result, the input signal and hardware device are not connected to a common reference, which can
cause the input signal to exceed the valid range of the hardware device. To circumvent this problem,
you must connect the signal to the onboard ground of the device. Examples of floating signal sources
include ungrounded thermocouples and battery devices.

A grounded signal is connected to the building ground. As a result, the input signal and hardware
device are connected to a common reference. Examples of grounded signal sources include
nonisolated instrument outputs and devices that are connected to the building power system.

Note For more information about channel configuration, refer to your hardware documentation.

Differential Inputs

When you configure your hardware for differential input, there are two signal wires associated with
each input signal — one for the input signal and one for the reference (return) signal. The
measurement is the difference in voltage between the two wires, which helps reduce noise and any
voltage that is common to both wires.

As shown below, the input signal is connected to the positive amplifier socket (labeled +) and the
return signal is connected to the negative amplifier socket (labeled -). The amplifier has a third
connector that allows these signals to be referenced to ground.

Analog Input Subsystem

Tnput signal

Return signal

National Instruments recommends that you use differential inputs under any of these conditions:

* The input signal is low level (less than 1 volt).

» The leads connecting the signal are greater than 10 feet.

* The input signal requires a separate ground-reference point or return signal.
* The signal leads travel through a noisy environment.

Single-Ended Inputs

When you configure your hardware for single-ended input, there is one signal wire associated with
each input signal, and each input signal is connected to the same ground. Single-ended
measurements are more susceptible to noise than differential measurements because of differences
in the signal paths.

As shown below, the input signal is connected to the positive amplifier socket (labeled +) and the
ground is connected to the negative amplifier socket (labeled -).

Amplifier

Input signal
|

Ground

National Instruments suggests that you can use single-ended inputs under any of these conditions:

* The input signal is high level (greater than 1 volt).
* The leads connecting the signal are less than 10 feet.
* The input signal can share a common reference point with other signals.

You should use differential input connectors for any input signal that does not meet the preceding
conditions. You can configure many National Instruments boards for two different types of single-
ended connections:

* Referenced single-ended (RSE) connection

The RSE configuration is used for floating signal sources. In this case, the hardware device itself
provides the reference ground for the input signal.

1-19

1 introduction to Data Acquisition

1-20

* Nonreferenced single-ended (NRSE) connection

The NRSE input configuration is used for grounded signal sources. In this case, the input signal
provides its own reference ground and the hardware device should not supply one.

Refer to your National Instruments hardware documentation for more information about RSE and
NRSE connections.

Transferring Data from Hardware to System Memory

The transfer of acquired data from the hardware to system memory follows these steps:

1 Acquired data is stored in the hardware's first-in first-out (FIFO) buffer.
2 Data is transferred from the FIFO buffer to system memory using interrupts or DMA.

These steps happen automatically. Typically, all that's required from you is some initial configuration
of the hardware device when it is installed.

FIFO Buffer

The FIFO buffer is used to temporarily store acquired data. The data is temporarily stored until it can
be transferred to system memory. The process of transferring data into and out of an analog input
FIFO buffer is given below:

1 The FIFO buffer stores newly acquired samples at a constant sampling rate.

2 Before the FIFO buffer is filled, the software starts removing the samples. For example, an
interrupt is generated when the FIFO is half full, and signals the software to extract the samples
as quickly as possible.

3 Because servicing interrupts or programming the DMA controller can take up to a few
milliseconds, additional data is stored in the FIFO for future retrieval. For a larger FIFO buffer,
longer latencies can be tolerated.

4 The samples are transferred to system memory via the system bus (for example, PCI bus or AT
bus). After the samples are transferred, the software is free to perform other tasks until the next
interrupt occurs. For example, the data can be processed or saved to a disk file. As long as the
average rates of storing and extracting data are equal, acquired data will not be missed and your
application should run smoothly.

Interrupts

The slowest but most common method to move acquired data to system memory is for the board to
generate an interrupt request (IRQ) signal. This signal can be generated when one sample is acquired
or when multiple samples are acquired. The process of transferring data to system memory via
interrupts is given below:

1 When data is ready for transfer, the CPU stops whatever it is doing and runs a special interrupt
handler routine that saves the current machine registers, and then sets them to access the board.
2 The data is extracted from the board and placed into system memory.

3 The saved machine registers are restored, and the CPU returns to the original interrupted
process.

Analog Input Subsystem

The actual data move is fairly quick, but there is a lot of overhead time spent saving, setting up, and
restoring the register information. Therefore, depending on your specific system, transferring data by
interrupts might not be a good choice when the sampling rate is greater than around 5 kHz.

DMA

Direct memory access (DMA) is a system whereby samples are automatically stored in system
memory while the processor does something else. The process of transferring data via DMA is given
below:

1 When data is ready for transfer, the board directs the system DMA controller to put it into in
system memory as soon as possible.

2 Assoon as the CPU is able (which is usually very quickly), it stops interacting with the data
acquisition hardware and the DMA controller moves the data directly into memory.

3 The DMA controller gets ready for the next sample by pointing to the next open memory location.

The previous steps are repeated indefinitely, with data going to each open memory location in a
continuously circulating buffer. No interaction between the CPU and the board is needed.

Your computer supports several different DMA channels. Depending on your application, you can use
one or more of these channels, For example, simultaneous input and output with a sound card
requires one DMA channel for the input and another DMA channel for the output.

1-21

1 introduction to Data Acquisition

Making Quality Measurements

1-22

In this section...

“What Do You Measure?” on page 1-22

“Accuracy and Precision” on page 1-22

“Noise” on page 1-25

“Matching the Sensor Range and A/D Converter Range” on page 1-25

“How Fast Should a Signal Be Sampled?” on page 1-26

What Do You Measure?

For most data acquisition applications, you need to measure the signal produced by a sensor at a
specific rate.

In many cases, the sensor signal is a voltage level that is proportional to the physical phenomena of
interest (for example, temperature, pressure, or acceleration). If you are measuring slowly changing
(quasi-static) phenomena like temperature, a slow sampling rate usually suffices. If you are
measuring rapidly changing (dynamic) phenomena like vibration or acoustic measurements, a fast
sampling rate is required.

To make high-quality measurements, you should follow these rules:

* Maximize the precision and accuracy
* Minimize the noise

* Match the sensor range to the A/D range

Accuracy and Precision

Whenever you acquire measured data, you should make every effort to maximize its accuracy and
precision. The quality of your measurement depends on the accuracy and precision of the entire data
acquisition system, and can be limited by such factors as board resolution or environmental noise.

In general terms, the accuracy of a measurement determines how close the measurement comes to
the true value. Therefore, it indicates the correctness of the result. The precision of a measurement
reflects how exactly the result is determined without reference to what the result means. The relative
precision indicates the uncertainty in a measurement as a fraction of the result.

For example, suppose you measure a table top with a meter stick and find its length to be 1.502
meters. This number indicates that the meter stick (and your eyes) can resolve distances down to at
least a millimeter. Under most circumstances, this is considered to be a fairly precise measurement
with a relative precision of around 1/1500. However, suppose you perform the measurement again
and obtain a result of 1.510 meters. After careful consideration, you discover that your initial
technique for reading the meter stick was faulty because you did not read it from directly above.
Therefore, the first measurement was not accurate.

Precision and accuracy are illustrated below.

Making Quality Measurements

X x
X
x
x
@X
Not precise Precise
Not aceurate Not aceurate
Mot precise Precize
Accurate Accurate

For analog input subsystems, accuracy is usually limited by calibration errors while precision is
usually limited by the A/D converter. Accuracy and precision are discussed in more detail below.

Accuracy

Accuracy is defined as the agreement between a measured quantity and the true value of that
quantity. Every component that appears in the analog signal path affects system accuracy and
performance. The overall system accuracy is given by the component with the worst accuracy.

For data acquisition hardware, accuracy is often expressed as a percent or a fraction of the least
significant bit (LSB). Under ideal circumstances, board accuracy is typically £0.5 LSB. Therefore, a
12 bit converter has only 11 usable bits.

Many boards include a programmable gain amplifier, which is located just before the converter input.
To prevent system accuracy from being degraded, the accuracy and linearity of the gain must be
better than that of the A/D converter. The specified accuracy of a board is also affected by the
sampling rate and the settling time of the amplifier. The settling time is defined as the time required
for the instrumentation amplifier to settle to a specified accuracy. To maintain full accuracy, the
amplifier output must settle to a level given by the magnitude of 0.5 LSB before the next conversion,
and is on the order of several tenths of a millisecond for most boards.

Settling time is a function of sampling rate and gain value. High rate, high gain configurations
require longer settling times while low rate, low gain configurations require shorter settling times.

Precision

The number of bits used to represent an analog signal determines the precision (resolution) of the
device. The more bits provided by your board, the more precise your measurement will be. A high
precision, high resolution device divides the input range into more divisions thereby allowing a
smaller detectable voltage value. A low precision, low resolution device divides the input range into
fewer divisions thereby increasing the detectable voltage value.

1-23

1 introduction to Data Acquisition

1-24

The overall precision of your data acquisition system is usually determined by the A/D converter, and
is specified by the number of bits used to represent the analog signal. Most boards use 12 or 16 bits.
The precision of your measurement is given by:

precision = one part in 2"Wmberofbits

The precision in volts is given by:

voltage range

precision = W

For example, if you are using a 12 bit A/D converter configured for a 10 volt range, then

10 volts

precision = 12

This means that the converter can detect voltage differences at the level of 0.00244 volts (2.44 mV).
How Are Range, Gain, and Measurement Precision Related?

When you configure the input range and gain of your analog input subsystem, the end result should
maximize the measurement resolution and minimize the chance of an overrange condition. The actual
input range is given by the formula:

input range

actual input range = gam

The relationship between gain, actual input range, and precision for a unipolar and bipolar signal
having an input range of 10 V is shown below.

Relationship Between Input Range, Gain, and Precision

Input Range Gain Actual Input Range Precision (12 Bit A/D)
Oto10V 1.0 Oto10V 2.44 mV
2.0 Oto5V 1.22 mV
5.0 Oto2V 0.488 mV
10.0 OtolV 0.244 mV
5to5V 0.5 -10to 10V 4.88 mV
1.0 -5to5V 2.44 mV
2.0 -25t02.5V 1.22 mV
5.0 -1.0to 1.0V 0.488 mV
10.0 -0.5t0 0.5V 0.244 mV

As shown in the table, the gain affects the precision of your measurement. If you select a gain that
decreases the actual input range, then the precision increases. Conversely, if you select a gain that
increases the actual input range, then the precision decreases. This is because the actual input range
varies but the number of bits used by the A/D converter remains fixed.

Note With Data Acquisition Toolbox software, you do not have to specify the range and gain. Instead,
you simply specify the actual input range desired.

Making Quality Measurements

Noise

Noise is considered to be any measurement that is not part of the phenomena of interest. Noise can
be generated within the electrical components of the input amplifier (internal noise), or it can be
added to the signal as it travels down the input wires to the amplifier (external noise). Techniques
that you can use to reduce the effects of noise are described below.

Removing Internal Noise

Internal noise arises from thermal effects in the amplifier. Amplifiers typically generate a few
microvolts of internal noise, which limits the resolution of the signal to this level. The amount of noise
added to the signal depends on the bandwidth of the input amplifier.

To reduce internal noise, you should select an amplifier with a bandwidth that closely matches the
bandwidth of the input signal.

Removing External Noise

External noise arises from many sources. For example, many data acquisition experiments are subject
to 60 Hz noise generated by AC power circuits. This type of noise is referred to as pick-up or hum,
and appears as a sinusoidal interference signal in the measurement circuit. Another common
interference source is fluorescent lighting. These lights generate an arc at twice the power line
frequency (120 Hz).

Noise is added to the acquisition circuit from these external sources because the signal leads act as
aerials picking up environmental electrical activity. Much of this noise is common to both signal
wires. To remove most of this common-mode voltage, you should

* Configure the input channels in differential mode. Refer to Channel Configuration on page 1-18
for more information about channel configuration.

» Use signal wires that are twisted together rather than separate.

* Keep the signal wires as short as possible.

* Keep the signal wires as far away as possible from environmental electrical activity.

Filtering

Filtering also reduces signal noise. For many data acquisition applications, a low-pass filter is
beneficial. As the name suggests, a low-pass filter passes the lower frequency components but
attenuates the higher frequency components. The cut-off frequency of the filter must be compatible
with the frequencies present in the signal of interest and the sampling rate used for the A/D
conversion.

A low-pass filter that's used to prevent higher frequencies from introducing distortion into the
digitized signal is known as an antialiasing filter if the cut-off occurs at the Nyquist frequency. That is,
the filter removes frequencies greater than one-half the sampling frequency. These filters generally
have a sharper cut-off than the normal low-pass filter used to condition a signal. Antialiasing filters
are specified according to the sampling rate of the system and there must be one filter per input
signal.

Matching the Sensor Range and A/D Converter Range

When sensor data is digitized by an A/D converter, you must be aware of these two issues:

1-25

1 introduction to Data Acquisition

1-26

» The expected range of the data produced by your sensor. This range depends on the physical
phenomena you are measuring and the output range of the sensor.

* The range of your A/D converter. For many devices, the hardware range is specified by the gain
and polarity.

You should select the sensor and hardware ranges such that the maximum precision is obtained, and
the full dynamic range of the input signal is covered.

For example, suppose you are using a microphone with a dynamic range of 20 dB to 140 dB and an
output sensitivity of 50 mV/Pa. If you are measuring street noise in your application, then you might
expect that the sound level never exceeds 80 dB, which corresponds to a sound pressure magnitude
of 200 mPa and a voltage output from the microphone of 10 mV. Under these conditions, you should
set the input range of your data acquisition card for a maximum signal amplitude of 10 mV, or a little
more.

How Fast Should a Signal Be Sampled?

Whenever a continuous signal is sampled, some information is lost. The key objective is to sample at a
rate such that the signal of interest is well characterized and the amount of information lost is
minimized.

If you sample at a rate that is too slow, then signal aliasing can occur. Aliasing can occur for both
rapidly varying signals and slowly varying signals. For example, suppose you are measuring
temperature once a minute. If your acquisition system is picking up a 60-Hz hum from an AC power
supply, then that hum will appear as constant noise level if you are sampling at 30 Hz.

Aliasing occurs when the sampled signal contains frequency components greater than one-half the
sampling rate. The frequency components could originate from the signal of interest in which case
you are undersampling and should increase the sampling rate. The frequency components could also
originate from noise in which case you might need to condition the signal using a filter. The rule used
to prevent aliasing is given by the Nyquist theorem, which states that

* An analog signal can be uniquely reconstructed, without error, from samples taken at equal time
intervals.

* The sampling rate must be equal to or greater than twice the highest frequency component in the
analog signal. A frequency of one-half the sampling rate is called the Nyquist frequency.

However, if your input signal is corrupted by noise, then aliasing can still occur.

For example, suppose you configure your A/D converter to sample at a rate of 4 samples per second
(4 S/s or 4 Hz), and the signal of interest is a 1 Hz sine wave. Because the signal frequency is one-
fourth the sampling rate, then according to the Nyquist theorem, it should be completely
characterized. However, if a 5 Hz sine wave is also present, then these two signals cannot be
distinguished. In other words, the 1 Hz sine wave produces the same samples as the 5 Hz sine wave
when the sampling rate is 4 S/s. This situation is shown below.

Making Quality Measurements

Amplitude

0.4 05
Time (sec.)

Sample period

In a real-world data acquisition environment, you might need to condition the signal by filtering out
the high frequency components.

Even though the samples appear to represent a sine wave with a frequency of one-fourth the
sampling rate, the actual signal could be any sine wave with a frequency of:

(n = 0.25) x (sampling rate)

where n is zero or any positive integer. For this example, the actual signal could be at a frequency of
3 Hz, 5 Hz, 7 Hz, 9 Hz, and so on. The relationship 0.25 x (Sampling rate) is called the alias of a
signal that may be at another frequency. In other words, aliasing occurs when one frequency assumes
the identity of another frequency.

If you sample the input signal at least twice as fast as the highest frequency component, then that
signal might be uniquely characterized, but this rate would not mimic the waveform very closely. As
shown below, to get an accurate picture of the waveform, you need a sampling rate of roughly 10 to
20 times the highest frequency.

1-27

1 introduction to Data Acquisition

Amplitude
=]
T

L]

a a1 0z 0.3 0.4 03 08 o7 08 09 1

Amplitude

= e P

a a. 02 0.3 0.4 035 08 o7 0.8 0.9 1
Time [sec.}

As shown in the top figure, the low sampling rate produces a sampled signal that appears to be a
triangular waveform. As shown in the bottom figure, a higher fidelity sampled signal is produced
when the sampling rate is higher. In the latter case, the sampled signal actually looks like a sine
wave.

How Can Aliasing Be Eliminated?

The primary considerations involved in antialiasing are the sampling rate of the A/D converter and
the frequencies present in the sampled data. To eliminate aliasing, you must

* Establish the useful bandwidth of the measurement.

* Select a sensor with sufficient bandwidth.

» Select a low-pass antialiasing analog filter that can eliminate all frequencies exceeding this
bandwidth.

* Sample the data at a rate at least twice that of the filter's upper cutoff frequency.

1-28

Selected Bibliography

Selected Bibliography

[1] Transducer Interfacing Handbook — A Guide to Analog Signal Conditioning, edited by Daniel H.
Sheingold; Analog Devices Inc., Norwood, MA, 1980.

[2] Bentley, John P, Principles of Measurement Systems, Second Edition; Longman Scientific and
Technical, Harlow, Essex, UK, 1988.

[3] Bevington, Philip R., Data Reduction and Error Analysis for the Physical Sciences; McGraw-Hill,
New York, NY, 1969.

[4] Carr, Joseph J., Sensors; Prompt Publications, Indianapolis, IN, 1997.

[5] The Measurement, Instrumentation, and Sensors Handbook, edited by John G. Webster; CRC
Press, Boca Raton, FL, 1999.

[6] PCI-MIO E Series User Manual, January 1997 Edition; Part Number 320945B-01, National
Instruments, Austin, TX, 1997.

1-29

Using Data Acquisition Toolbox Software

This topic provides the information you need to get started with Data Acquisition Toolbox software.
The sections are as follows.

» “Installation Information” on page 2-2
* “Access Your Hardware” on page 2-3

2 Using Data Acquisition Toolbox Software

Installation Information

2-2

In this section...

“Prerequisites” on page 2-2
“Toolbox Installation” on page 2-2

“Hardware and Driver Installation” on page 2-2

Prerequisites

To acquire live, measured data or generate signals between the MATLAB workspace, you must install
these components:

* MATLAB, and optionally Simulink

* Data Acquisition Toolbox

* The support package for your data acquisition device vendor

* A supported data acquisition device (see https://www.mathworks.com/hardware-support/
data-acquistion-software.html)

Toolbox Installation

To determine if Data Acquisition Toolbox software is installed on your system, type
ver

at the MATLAB prompt. The Command Window lists information about the software versions you are
running, including installed add-on products and their version numbers. Check the list to see if Data
Acquisition Toolbox appears. For information about installing the toolbox, see the MATLAB
Installation documentation.

If you experience installation difficulties and have Internet access, look for the license manager and
installation information at the MathWorks website (https://www.mathworks . com).

Hardware and Driver Installation

Device drivers and other vendor-specific software are available as Support Packages from the Add-
Ons menu. See “Install Hardware Support Package for Vendor Support” on page 5-2.

https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com

Access Your Hardware

Access Your Hardware

In this section...

“Connect to Your Hardware” on page 2-3
“Examine Your Hardware Resources” on page 2-3
“Acquire Audio Data” on page 2-4

“Generate Audio Data” on page 2-4

“Acquire and Generate Digital Data” on page 2-5

Connect to Your Hardware

Perhaps the most effective way to get started with Data Acquisition Toolbox software is to connect to
your hardware, and input or output data.

Each example in this topic illustrates a typical data acquisition workflow. A workflow comprises all
the steps you are likely to take when acquiring or outputting data using a supported hardware device.
You should keep these steps in mind when constructing your own data acquisition applications.

Note that the analog input and analog output examples use a sound card, while the digital I/O
example uses a National Instruments board. If you are using a different supported hardware device,
you should modify the vendor name and the device ID as needed.

If you want detailed information about any functions that are used, refer to the list of functions.

Note If you are connecting to a CompactDAQ devices or a counter/timer device, see “Counter and
Timer Input and Output”.

Examine Your Hardware Resources

You can examine the data acquisition hardware resources visible to the toolbox with the
daqvendorlist and daqlist functions. Hardware resources include installed boards, hardware
drivers, and adaptors.

For example, to view the available audio devices, type:
daglist("directsound")

To view available National Instruments devices, type:
daqlist("ni")

To view all available devices, type:

daglist

To view the operational status of hardware vendors, type:

daqvendorlist

2-3

2 Using Data Acquisition Toolbox Software

2-4

Acquire Audio Data

If you have a sound card installed, you can run the following example, which acquires 1 second of
data an audio input hardware channels, and then plots the acquired data.

You should modify this example to suit your specific application needs.

1

Create a DataAcquisition object — Create the DataAcquisition object d for a sound card.

d = daq('directsound");
Identify the system devices and their IDs for audio input and output.

daqlist("directsound")

7x4 table
DeviceID Description Model
"AudioQ" "DirectSound Primary Sound Capture Driver" "Primary Sound Capture Driver"
"Audiol" "DirectSound Headset Microphone (Plantronics BT600)" "Headset Microphone (Plantronics BT600)"
"Audio2" "DirectSound Primary Sound Driver" "Primary Sound Driver"
"Audio3" "DirectSound Headset Earphone (Plantronics BT600)" "Headset Earphone (Plantronics BT600)"
"Audio4" "DirectSound Speakers (2- Realtek High Definition Audio)" "Speakers (2- Realtek High Definition Audio)"
"Audio5" "DirectSound Speakers (Realtek High Definition Audio)" "Speakers (Realtek High Definition Audio)"
"Audio6" "DirectSound LEN LT2452pwC (NVIDIA High Definition Audio)" "LEN LT2452pwC (NVIDIA High Definition Audio)"

Add channel — Add an audio input channel to d for the microphone device.
addinput(d, "Audiol","1","Audio");

To display a summary of the DataAcquisition channels, type:

d.Channels
ans =
Index Type Device Channel Measurement Type Range Name
1 "audi" "Audiol" " "Audio" "-1.0 to +1.0"

Acquire data — Start the acquisition. When all the data is acquired, it is assigned to data.

data = read(d,seconds(1l));
plot(data)

Clean up — When you no longer need d, you should remove it from memory.

delete(d)
clear d

Generate Audio Data

If you have a sound card installed, you can run the following example, which outputs 1 second of data
to two analog output hardware channels.

You should modify this example to suit your specific application needs.

1

Create a DataAcquisition object — Create the DataAcquisition object d for a sound card.

d = daq('directsound');

Add channel — Add an audio output channel to DataAcquisition d. This example uses the device
ID Audio4 for the speakers.

addoutput(d, "Audiod","1", "Audio");

o

Access Your Hardware

To display a summary of the DataAcquisition and its channels, type:

d,d.Channels

Output data — Create 1 second of output data, and queue the data for output from the device.
You queue a matrix with one column of data for each hardware channel.

data = sin(linspace(0,2*pi*500,44100)"');
preload(d,data)

Start the output. When all the data is output, d stops generating.

start(d)
Clean up — When you no longer need d, you should remove it from memory and from the
MATLAB workspace.

delete(d)
clear d

Acquire and Generate Digital Data

If you have a supported National Instruments board with at least two digital I/O ports, you can run
the following example, which writes and reads digital values.

You should modify this example to suit your specific application needs. Adjust the example if the ports
on your device do not support the input/output directions specified here.

1

Create a DataAcquisition object — Create the DataAcquisition interface d for a National
Instruments board with hardware device ID cDAQ1Mod1.

s = daq("ni");
Add digital input channels — Add two lines from port 0 to d, and configure them for input.

addinput(d, "cDAQ1Modl","Port@/Line®:1","Digital");
Add digital output lines — Add two lines from port 0 to s, and configure them for output.

addoutput(d, "cDAQ1Mod1l", "Port0/Line2:3","Digital");

To display a summary of the channels, type:

d.Channels
ans =
Index Type Device Channel Measurement Type Range Name
1 "dio" "cDAQ1Mod1" "port@/lined" "InputOnly" "n/a" "Dev3 port0/line0"
2 "dio" "cDAQ1Mod1" "port@/linel" "InputOnly" "n/a" "Dev3 port@/linel"
3 "dio" "cDAQ1Mod1" "port@/line2" "OutputOnly" "n/a" "Dev3 port@/line2"
4 "dio" "cDAQ1Mod1" "port0/line3" "OutputOnly" "n/a" "Dev3 port@/line3"

Add clock and trigger — To synchronize operations, add a clock and trigger connection.
addclock(d, "ScanClock", "External", "cDAQ1/PFIQ");

addtrigger(d, "Digital","StartTrigger", "External", "cDAQ1l/PFI1");
d.Clocks,d.DigitalTriggers

ans =

Clock with properties:

2-5

2 Using Data Acquisition Toolbox Software

Source: 'External'’
Destination: 'cDAQ1l/PFIO'
Type: ScanClock

ans =
DigitalTrigger with properties:
Source: 'External'
Destination: 'cDAQ1l/PFI1'

Type: StartTrigger
Condition: 'RisingEdge’

Note Digital line values are usually not transferred at a specific rate. Although some specialized
boards support clocked /0.

5 Queue output data and start device — Create an array of output values, and queue the values.
Note that reading and writing digital I/O line values typically does not require that you configure
specific property values.

preload(d, round(rand(4000,2)));
gval = start(d);

6 Display input — To read only the input lines, type:

gval

7 Clean up — When you no longer need d, you should remove it from memory and from the
MATLAB workspace.

delete(d)
clear d

2-6

Introduction to the DataAcquisition
Interface

* “The DataAcquisition Object” on page 3-2
* “Get Command-Line Help” on page 3-3

3 Introduction to the DataAcquisition Interface

The DataAcquisition Object

The toolbox interface uses a DataAcquisition object that allows you to communicate easily with
devices from National Instruments, Measurement Computing, Analog Devices, Microsoft Windows
sound cards, and Digilent. You create a DataAcquisition using the daq function. A DataAcquisition
represents one or more channels that you specify on data acquisition devices. You configure a
DataAcquisition to acquire or generate data at a specific rate, based on the specified number of scans
or the duration of the operation.

For an explanation of how this communication works, see Data Acquisition System on page 1-5. The
relationship between you, the application software, the driver software, the chassis, and the devices
is shown here.

User

Application Software

Criver Software

river

e

For more information about creating a DataAcquisition, see “Create a DataAcquisition Interface” on
page 4-5.

See Also

More About

. “Limitations by Vendor” on page B-2

3-2

Get Command-Line Help

Get Command-Line Help

To access command-line help for Data Acquisition Toolbox, type:

help daq

or

daghelp

The Command Window displays links for the functions of the DataAcquisition interface.
To access command-line help for a particular function, type:

daghelp function name

For example,

daghelp readwrite

You can get help on individual properties of the toolbox objects. For example, to see help on the
Channels property of a DataAcquisition object, type:

help daq.interfaces.DataAcquisition.Channels
It can be easier to get function and property help if the object exists in the workspace. For example,
d = daq("ni");

help d.Rate
help d.addinput

3-3

Using the DataAcquisition Interface

* “Interface Workflow” on page 4-2

» “Digital Input and Output” on page 4-3

* “Discover Hardware Devices” on page 4-4
“Create a DataAcquisition Interface” on page 4-5

4 Using the DataAcquisition Interface

Interface Workflow

4-2

In this section...

“Working a DataAcquisition” on page 4-2

“DataAcquisition Interface and Data Acquisition Toolbox” on page 4-2

Working a DataAcquisition

Use the DataAcquisition object to communicate with data acquisition devices, such as National
Instruments devices including a CompactDAQ chassis.

Use the daq function to create a DataAcquisition interface.

You can also synchronize operations within the DataAcquisition. See “Synchronization” on page 13-
2 for more information.

DataAcquisition Interface and Data Acquisition Toolbox

Data Acquisition Toolbox and the MATLAB technical computing environment use the DataAcquisition
interface to communicate with devices of various vendors, such as National Instruments, including a
CompactDAQ chassis. You can operate in the foreground, where the operation blocks MATLAB until
complete, or in the background, where MATLAB continues to run additional MATLAB commands
while the hardware operation proceeds.

You can create a DataAcquisition with both analog input and analog output channels and configure
acquisition and generation simultaneously. See “Acquire Data and Generate Signals Simultaneously”
on page 6-16 for more information.

See Also

More About

. “Transition Your Code from Session to DataAcquisition Interface” on page 14-2

Digital Input and Output

Digital Input and Output
Digital subsystems transfer digital or logical values in bits via digital lines. You can perform clocked

and non-clocked digital operations using the DataAcquisition interface in the Data Acquisition
Toolbox.

For more information see “Digital Subsystem Channels” on page 9-2.

4-3

4 Using the DataAcquisition Interface

Discover Hardware Devices

Discover the supported data acquisition devices on your system.
Step 1. Discover hardware devices.

dev = daqglist

dev =
4x5 table
VendorID DeviceID Description Model
"ni" "Dev2" "National Instruments(TM) USB-6509" "USB-6509"
"ni" "Dev3" "National Instruments(TM) USB-6211" "USB-6211"
"directsound" "Audio®" "DirectSound Primary Sound Capture Driver" "Primary Sound Capture Driver"
"directsound" "Audiol" "DirectSound Primary Sound Driver" "Primary Sound Driver"

Step 2. Get detailed device information.

View the DeviceInfo details for the Dev3 device:
dev.DeviceInfo(2)
ans =

ni: National Instruments(TM) USB-6211 (Device ID: 'Dev3')
Analog input supports:
4 ranges supported
Rates from 0.1 to 250000.0 scans/sec
16 channels ('ai@' - 'ail5')
'Voltage' measurement type

Analog output supports:
-10 to +10 Volts range
Rates from 0.1 to 250000.0 scans/sec
2 channels ('ao0', 'aol')
'Voltage' measurement type

Digital IO supports:
8 channels ('port0/line®@' - 'portl/line3')
'"InputOnly', 'OutputOnly' measurement types

Counter input supports:
Rates from 0.1 to 80000000.0 scans/sec
2 channels ('ctr0', 'ctrl')
'EdgeCount', 'PulseWidth', 'Frequency', 'Position' measurement types

Counter output supports:
Rates from 0.1 to 80000000.0 scans/sec
2 channels ('ctr0','ctrl')
'PulseGeneration' measurement type

DeviceInfo

[1x1 daq.DeviceInfo]
[1x1 daq.DeviceInfo]
[1x1 daq.DeviceInfo]
[1x1 daq.DeviceInfo]

Create a DataAcquisition Interface

Create a DataAcquisition Interface

This example shows how to create a DataAcquisition interface and add channels to acquire and
generate data. You can also configure DataAcquisition and channel properties needed for your
operation.

Step 1. Find Devices for the Vendor.

daglist("ni")

2x4 table
DevicelD Description Model DeviceInfo
"Dev2" "National Instruments(TM) USB-6509" "USB-6509" [1x1 daqg.ni.DeviceInfo]
"Dev3" "National Instruments(TM) USB-6211" "USB-6211" [1x1 daqg.ni.DeviceInfo]

Step 2. Create a DataAcquisition Object.
d = dag("ni")
DataAcquisition using National Instruments(TM) hardware:

Running: 0

Rate: 1000
NumScansAvailable: 0
NumScansAcquired: 0
NumScansQueued: 0
NumScansOutputByHardware: 0
RateLimit: []

After you create a DataAcquisition object, add channels using the addinput and addoutput
functions.

Step 3. Add Channels to the DataAcquisition.

Add an analog input channel, and view the DataAcquisition channel list:

addinput(d, "Dev3","ai0@","Voltage")

d.Channels
Index Type Device Channel Measurement Type Range Name
1 "ai" "Dev3" "aio" "Voltage (Diff)" "-10 to +10 Volts" "Dev3_ai0"

Step 4. Change Channel Properties.

Change the channel TerminalConfig property to 'SingleEnded’, and view the updated

configuration:
d.Channels.TerminalConfig = "SingleEnded";
d.Channels
Index Type Device Channel Measurement Type Range Name

4 Using the DataAcquisition Interface

1 "ai" "Dev3" "aio" "Voltage (SingleEnd)" "-10 to +10 Volts" "Dev3 aib"

See Also

Related Examples

. “Acquire Counter Input Data” on page 8-3
. “Generate Pulse Data on a Counter Channel” on page 8-6
More About

. “Analog Input and Output”
. “Transition Your Code from Session to DataAcquisition Interface” on page 14-2

4-6

Support Package Installer

5 Support Package Installer

Install Hardware Support Package for Vendor Support

5-2

In this section...

“Install Support Packages” on page 5-2

“Update or Uninstall Support Packages” on page 5-2

To communicate with a data acquisition device, you need to install the required support package on
your system for the device vendor. Data Acquisition Toolbox support packages are available for the
following vendors:

* Analog Devices (ADALM1000)

* Digilent (Analog Discovery)

* Measurement Computing

* Microsoft (Windows Sound cards)
* National Instruments (NI-DAQmx)

Install Support Packages

To install the required support package for a specific vendor and device:

1 Onthe MATLAB Home tab, in the Environment section, click Add-Ons > Get Hardware
Support Packages.

2 In the left pane of the Add-On Explorer, scroll to Filter by Type and check Hardware Support
Packages.

3 Under Filter by Vendor check the vendor of your device. The Add-On Explorer displays support
packages for that vendor. Click the support package for your vendor and device.

4 Click Install > Install. Sign in to your MathWorks® account if necessary, and proceed.
Update or Uninstall Support Packages

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage Add-Ons.
To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for Updates >
Hardware Support Packages.

See Also

More About
. “Get and Manage Add-Ons” (MATLAB)

Analog Input and Output

* “Acquire Data in the Foreground” on page 6-2

* “Acquire Data from Multiple Channels” on page 6-3

* “Acquire Data in the Background” on page 6-4

* “Acquire Bridge Measurements” on page 6-5

* “Acquire Sound Pressure Data” on page 6-7

* “Acquire IEPE Data” on page 6-9

* “Generate Signals in the Foreground” on page 6-11

* “Generate Signals on Multiple Channels” on page 6-12

* “Generate Signals in the Background” on page 6-13

* “Generate Signals in the Background Continuously” on page 6-14
* “Acquire Data and Generate Signals Simultaneously” on page 6-16
* “Acquire Data with the Analog Input Recorder” on page 6-17

* “Generate Signals with the Analog Output Generator” on page 6-21

6 Analog Input and Output

Acquire Data in the Foreground

6-2

This example shows how to acquire voltage data from an NI 9205 device with ID cDAQ1Mod1.
Create a DataAcquisition object and save it to the variable, d:

d = dag("ni")

d =

DataAcquisition using National Instruments(TM) hardware:

Running: 0

Rate: 1000
NumScansAvailable: 0
NumScansAcquired: 0
NumScansQueued: 0
NumScansOutputByHardware: 0
RateLimit: []

By default, the acquisition is configured to acquire at the rate of 1000 scans per second.
Add an analog input channel for voltage measurement, using the device channel ai0:
addinput(d, "cDAQ1Mod1l","ai0","Voltage");

Acquire data for 2 seconds and store it in the variable, data, then plot it:

data = read(d,seconds(2),"OutputFormat", "Matrix");
plot(data)

Specify an acquisition of 4096 scans of data. Changing the number of scans changes the duration of
the acquisition to 4.096 seconds at the default rate of 1000 scans per second.

Acquire the data and store it in the variable data, and then plot it:

data = read(d, 4096, "OutputFormat", "Matrix");
plot(data)

See Also

Related Examples
. “Acquire Data in the Background” on page 6-4

Acquire Data from Multiple Channels

Acquire Data from Multiple Channels

This example shows how to acquire data from multiple channels, and from multiple devices on the
same chassis. In this example, you acquire voltage data from an NI 9201 device with ID cDAQ1Mod4
and an NI 9205 device with ID cDAQ1Mod1.

Create a DataAcquisition object and add two analog input voltage channels for cDAQ1Mod1 with
channel IDs 0 and 1:

d = dag("ni");
addinput(d, "cDAQ1Mod1",0:1,"Voltage")

ch =
Index Type Device Channel Measurement Type Range Name
1 "ai" "cDAQ1Mod1" "ai®" "Voltage (Diff)" "-10 to +10 Volts" "cDAQ1Modl ai®"
2 "ai" "cDAQ1Mod1" "ail" "Voltage (Diff)" "-10 to +10 Volts" "cDAQ1Modl ail"

Add an additional channel for a separate device, cDAQ1Mod6 with channel ID 0. For NI devices, use
either a terminal name, like ai0, or a numeric equivalent like 0. Then view all channels on the
DataAcquisition.

ch = addinput(d, "cDAQ1Mod6","ai0@","Voltage");

d.Channels
Index Type Device Channel Measurement Type Range Name
1 "ai" "cDAQ1Mod1" "ai®" "Voltage (Diff)" "-10 to +10 Volts" "cDAQ1Modl aie"
2 "ai" "cDAQ1Mod1" "ail" "Voltage (Diff)" "-10 to +10 Volts" "cDAQ1Modl ail"
3 "ai" "cDAQ1Mod6" "ai®" "Voltage (Diff)" "-10 to +10 Volts" "cDAQ1Mod6_aib"

Acquire one second of data and store it in the variable data, and then plot it:

data = read(d,seconds(1l),"OutputFormat","Matrix");
plot(data)

Change the properties of the channel ai® on cDAQ1Mod6 and display ch:

ch.TerminalConfig ="SingleEnded";

ch.Name = "Velocity sensor";
ch
ch =
Index Type Device Channel Measurement Type Range Name
1 "ai" "cDAQ1Mod6" "aid" "Voltage (SingleEnd)" "-10 to +10 Volts" "Velocity sensor"

Acquire the data and store it in the variable, data, and plot it:
data = read(d,seconds(1l),"OutputFormat","Matrix");
plot(data)

See Also

Related Examples
. “Acquire Data in the Foreground” on page 6-2
. “Acquire Data in the Background” on page 6-4

6 Analog Input and Output

Acquire Data in the Background

6-4

This example shows how to acquire data in the background using callbacks while MATLAB continues
to run.

A background acquisition depends on callbacks to allow your code to access data as the hardware
acquires it and to react to any errors as they occur. In this example, you acquire data from an NI
9205 device with ID cDAQ1Mod1 using the ScansAvailableFcnCount property to trigger the
function call defined by the ScansAvailableFcn property.

Create an NI DataAcquisition object with an analog input voltage channel on cDAQ1Mod1:

d = daq("ni");
ch = addinput(d, "cDAQ1Modl1l","ai0","Voltage");

Create a simple callback function to plot the acquired data and save it as plotMyData.m in your
working directory. Enter the following code in the file:

function plotMyData(obj,evt)
% obj is the DataAcquisition object passed in. evt is not used.
data = read(obj,obj.ScansAvailableFcnCount, "OutputFormat", "Matrix");
plot(data)
end

Set the callback function property to use your function.

d.ScansAvailableFcn = @plotMyData;

Start the acquisition to run for 5 seconds in the background.

start(d, "Duration",5))

Speak into the microphone and watch the plot. It updates 10 times per second.

See Also

Related Examples
. “Acquire Data in the Foreground” on page 6-2

Acquire Bridge Measurements

Acquire Bridge Measurements

This example shows how to acquire and plot data from an NI USB-9219 device. The device ID is

cDAQ1Mod7.

Create a DataAcquisition object assigned to the variable d:

d = daq("ni");

Add an analog input channel for Bridge measurement type, assigned to the variable ch:

ch = addinput(d, "cDAQ1Mod7","ail","Bridge");

You might see this warning:

Warning: The Rate property was reduced to 2 due to the default ADCTimingMode of this device,

which is 'HighResolution'.

To increase rate, change ADCTimingMode on this channel to 'HighSpeed'.

To allow a higher acquisition rate, change the channel ADCTimingMode to 'HighSpeed':

ch.ADCTimingMode =

"HighSpeed"

You might see this warning:

Warning: This property must be the same for all channels on this device.
associated with this device were updated.

Change the acquisition rate to 10 scans per second.

d.Rate = 10;

Set the channel BridgeMode to 'Full', which uses all four resistors in the device to acquire the

voltage values:

ch.BridgeMode = "Full"

ch =

Data acquisition analog

BridgeMode:
ExcitationSource:
ExcitationVoltage:
NominalBridgeResistance:
Range:

Name:

ID:

Device:

MeasurementType:
ADCTimingMode:

input channel 'ail' on device 'cDAQ1Mod7':

Full

Internal

2.5

"Unknown'

-0.063 to +0.063 VoltsPerVolt
empty

'ail'

[1x1 daq.ni.CompactDAQModule]
'Bridge’

HighSpeed

Set the resistance of the bridge device to 350 ohms:

ch.NominalBridgeResistance = 350

ch =

Data acquisition analog

BridgeMode:
ExcitationSource:
ExcitationVoltage:
NominalBridgeResistance:
Range:

input channel 'ail' on device 'cDAQ1Mod7':

Full

Internal

2.5

350

-0.063 to +0.063 VoltsPerVolt

6 Analog Input and Output

6-6

Name: empty
ID: 'ail'
Device: [1x1 daqg.ni.CompactDAQModule]
MeasurementType: 'Bridge’
ADCTimingMode: HighSpeed

Save the acquired data to a variable and start the acquisition:
data = read(d,seconds(1l),"OutputFormat", "Matrix")
Plot the acquired data:

plot(data)

See Also

Related Examples
. “Acquire Data in the Foreground” on page 6-2
. “Acquire Data in the Background” on page 6-4

Acquire Sound Pressure Data

Acquire Sound Pressure Data

This example shows how to acquire sound data from an NI 9234. The device is in an NI cDAQ-9178
chassis, in slot 3 with ID cDAQ1Mod3.

Create a DataAcquisition object, and add an analog input channel with Microphone measurement
type:

d =daq('ni');
ch = addAnalogInputChannel(d, "cDAQ1Mod3",0,"Microphone");

Set the channel sensitivity to 0.037 v/pa.

ch.Sensitivity = 0.037
ch =
Data acquisition analog input microphone channel 'ai®@' on device 'cDAQ1Mod3':

Sensitivity: 0.037
MaxSoundPressurelLevel: 136
ExcitationCurrent: 0.002
ExcitationSource: Internal
Coupling: AC
TerminalConfig: PseudoDifferential
Range: -135 to +135 Pascals
Name: "'
ID: 'ail'
Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Microphone’
ADCTimingMode: "'

Change the maximum sound pressure level to 100 dB.

ch.MaxSoundPressureLevel = 100
ch =
Data acquisition analog input microphone channel 'ai®' on device 'cDAQ1Mod3':

Sensitivity: 0.037
MaxSoundPressureLevel: 100
ExcitationCurrent: 0.002
ExcitationSource: Internal
Coupling: AC
TerminalConfig: PseudoDifferential
Range: -135 to +135 Pascals
Name: "'
ID: 'ail'
Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Microphone’
ADCTimingMode: ''

Acquire 4 seconds of data and save it in a variable.
[data,time] = read(d,seconds(4),"OutputFormat","Matrix");
Plot the data.

plot(time,data)

6 Analog Input and Output

6-8

Bl Figure 1 & & 5 8 = i L = | =] iE-_J
File Edit View Insert Tools Desktop Window Help L
]::ljlﬂ-ila h? +\-_\-®@@£"ﬂ: DIE‘ m O
1 T T T T T T T T
0.5H .
ok 4
_0_5 | 1 | 1 1 | 1 |
0 05 1 15 2 25 3 3.5 4 4.5
See Also

Related Examples
. “Acquire Data in the Foreground” on page 6-2
. “Acquire Data in the Background” on page 6-4

Acquire IEPE Data

Acquire IEPE Data

This example shows how to acquire IEPE data using an NI 9234. The device is in an NI cDAQ-9178
chassis in slot 3 with ID cDAQ1Mod3.

Create a DataAcquisition object, and add an analog input channel with [EPE measurement type.

d = daq("ni");
ch = addinput(d, "cDAQ1Mod3",0,"IEPE");

Change the channel ExcitationCurrent property value to 0.004 volts.
ch.ExcitationCurrent = .004;

Acquire the data against time and save it in a variable.

[data,time] = read(d,seconds(1.35),"0OutputFormat","Matrix");
Plot the data.

plot(time,data)

6-9

6 Analog Input and Output

- ™
n F|gu el v— — E=r = g
File Edit View Insert Tools Desktop Window Help L

]:Ilﬁlngl! h? .f\-._'\-{fr?@gﬂ’ EJ DIE‘ DQ

0.015 T T T T T T

0.01r “ .

0.005F ﬁ .

-0.005 .

-0.01 .

-0.015 .

-0.02 8

_0_025 1 | 1 1 1 1
0 0.2 04 0.6 0.8 1 12 1.4

See Also

Related Examples
. “Acquire Data in the Foreground” on page 6-2
. “Acquire Data in the Background” on page 6-4

6-10

Generate Signals in the Foreground

Generate Signals in the Foreground

This example shows how to generate data using an NI 9263 device with ID cDAQ1Mod?2.
Create a DataAcquisition object assigned to the variable d:

d = daq("ni");

Change the scan rate of the DataAcquisition to generate 10,000 scans per second:
d.Rate = 10000

d =

DataAcquisition using National Instruments(TM) hardware:

Running: 0

Rate: 10000
NumScansAvailable: 0
NumScansAcquired: 0
NumScansQueued: 0
NumScansOutputByHardware: 0
RateLimit: []

Add an analog output Voltage channel:

ch = addoutput(d, "cDAQ1Mod2",0,"Voltage");

You can specify the channel ID on NI devices using a terminal name, like 'aol’, or a numeric
equivalent like 1.

Create the data to define the output signal being generated. The output scans of one channel are
defined by a column vector.

outputData = linspace(-1, 1, 2200)"';

Generate the output signal. The output signal will have a duration of 0.22 seconds, based on the
length of the queued data and the specified scan rate. MATLAB waits for this foreground generation,
and returns when the generation is complete.

write(d,outputData)

See Also

Related Examples

. “Generate Signals in the Background” on page 6-13

6-11

6 Analog Input and Output

Generate Signals on Multiple Channels

6-12

This example shows how to generate data from multiple channels and multiple devices. The example
generates data using channels from an NI 9263 voltage device with ID cDAQ1Mod2, and an NI 9265
current device with ID cDAQ1Mod8.

Create an NI DAtaAcquisition object and add two analog output voltage channels from cDAQ1Mod?2:

d = daq("ni");
addoutput(d, "cDAQlMod2', 2:3, "Voltage");

Add one output current channel from cDAQ1Mod8:
addoutput(d, "cDAQ1Mod8", "ao2", "Current");
Specify the channel ID on NI devices using a terminal name, like aol, or a numeric equivalent like 1.

Create a set of 1000 scans of data to output for all channels. Each channel output data is defined by a
column in the 1000-by-3 data matrix.

outputData(:,1)
outputData(:,2)
outputData(:,3)

linspace(-1,1,1000)";
linspace(-2,2,1000)";
linspace(0,0.02,1000)";

Generate the output signals from the data matrix.

write(d,outputData);
See Also

Related Examples
. “Generate Signals in the Foreground” on page 6-11
. “Generate Signals in the Background” on page 6-13

Generate Signals in the Background

Generate Signals in the Background

This example shows how to generate signals in the background while MATLAB continues to run.

Create an NI DataAcquisition object and add an analog output voltage channel from cDAQ1Mod?2:

d = daq("ni");
addoutput(d, "cDAQ1Mod2","a00", "Voltage");

Specify the channel ID on NI devices using a terminal name, like 'aol’, or a numeric equivalent like
1.

Create the data to output:
outputData = (linspace(-1,1,5000)"');
In this case, 5000 scans will run for 5 seconds.

Queue the output data:

preload(d,outputData);

Start signal output generation:

start(d);

You can execute other MATLAB commands while the generation is in progress. In this example, call
pause, which causes the MATLAB command line to wait for you to press any key.

pause

See Also

Related Examples

. “Generate Signals in the Foreground” on page 6-11

6-13

6 Analog Input and Output

Generate Signals in the Background Continuously

6-14

This example shows how to continuously generate signals. A continuous background generation
depends on callbacks to enable continuous queuing of data and to react to any errors as they occur.
In this example, you generate from an NI 9263 device with ID cDAQ1Mod?2.

A callback function is configured to run when a certain number of scans are required.

Create an NI DataAcquisition object and add an analog output voltage channel on cDAQ1Mod2:

d = dag("ni");
addoutput(d, "cDAQ1Mod2","aoc0","Voltage");

Specify the channel ID on NI devices using a terminal name, like 'aol’, or a numeric equivalent like
1.

Queue a column of output data.
preload(d, linspace(1,10,1000)"');

Create a simple callback function to load data 1000 samples at a time. Save the function file as
loadMoreData.m in your working folder:

function loadMoreData(obj,evt)
% obj is the DataAcquisition object passed in. evt is not used.

preload(obj,linspace(1,10,1000)"');
end

Define the ScansRequiredFcn to call your function loadMoreData:

d.ScansRequiredFcn = @loadMoreData;

This callback is executed whenever the number of queued scans falls below the threshold defined by
the property ScansRequiredFcnCount. The default threshold is defined at 0.5 seconds of data at
the default scan rate. In other words, with a default Rate at 1000 scans per second, the default
ScansRequiredFcnCount value is 500. As your device generates an output signal, when the queued
data falls below 500 scans, it triggers the ScansRequiredFcn.

d.ScansRequiredFcnCount
ans =
500

Generate the continuous output signal:

start(d, "Continuous")

You can execute other MATLAB commands while the generation is in progress. In this example, issue
a pause, which causes the MATLAB command line to wait for you to press any key.

pause

Tip If you want to continuously generate a repeating or periodic output, preload the waveform data,
and use

Generate Signals in the Background Continuously

start(d, "RepeatOutput")

See Also

Related Examples
. “Generate Signals in the Background” on page 6-13

6-15

6 Analog Input and Output

Acquire Data and Generate Signals Simultaneously

This example shows how to acquire data with an NI 9205 device of ID cDAQ1Mod1, while generating
signals from an NI 9263 device with ID cDAQ1Mod?2.

You can acquire data and generate signals at the same time, on devices on the same chassis. When
the DataAcquisition contains output channels, the duration of a finite generation and acquisition
depends on the number of scans and the scan rate.

Create an NI DataAcquisition object and add one analog input channel on cDAQ1Mod1 and one analog
output channel on cDAQ1Mod?2:

d = daq("ni");
addinput(d, "cDAQ1Modl","ai0®","Voltage");
addoutput(d, "cDAQ1Mod2","aoc0","Voltage");

d.Channels
ans =
Index Type Device Channel Measurement Type Range Name
1 "ai" "cDAQ1Mod1" "aig" "Voltage (SingleEnd)" "-10 to +10 Volts" "cDAQ1Modl ai@"
1 "ao" "cDAQ1Mod2" "ao0" "Voltage (SingleEnd)" "-10 to +10 Volts" "cDAQ1Mod2 ao00"

Define the output signal data for 2500 scans:
outData = linspace(-1,10,2500)";

The generated output signal of 2500 scans will run for 2.5 seconds at a scan rate of 1000 samples per
second.

Generate the output signal and acquire the input data:
inData = readwrite(d,outData, "OutputFormat", "Matrix");
plot(inData)

See Also

Related Examples

. “Generate Signals in the Foreground” on page 6-11
. “Generate Signals in the Background” on page 6-13
. “Acquire Data in the Foreground” on page 6-2

. “Acquire Data in the Background” on page 6-4

6-16

Acquire Data with the Analog Input Recorder

Acquire Data with the Analog Input Recorder

This topic shows how to use the Analog Input Recorder app to view and record data from an NI
USB-6211 device.

To open the Analog Input Recorder, on the MATLAB Toolstrip, on the Apps tab, in the Test and
Measurement section, click Analog Input Recorder.

Analog Input
Recorder

Upon opening, the Analog Input Recorder attempts to find all your attached analog and audio input
devices.

Note Opening the Analog Input Recorder deletes all your existing DataAcquisition interfaces in
MATLAB.

The DataAcquisition interface created by the Analog Input Recorder is not accessible from the
MATLAB command line.

If you plug in a device while the app is open, you must refresh the listing for access to that device. On
the Devices tab, click Refresh. Use the same procedure to remove a device from the listing after
unplugging it.

Select the device you want to use in the Device List. The app immediately starts a preview of the
analog input using default settings.

6-17

6 Analog Input and Output

4\ Analog Input Recorder — u]
ANALOG INPUT RECORDER

Rate (scans/s) | 1000 Duratian (5 L1 | Woarkspace Varisble |[DAC1] (o m >3

Win Rate 0.1 Number of Scans {1000 Recordl[l St | Generare
Max Rate 250000 M Continuous Analyzer | Script
CONFIGURE RECORD ANALYZE CODE
@ =
Device List = Dreaie
10

(. Plot Tools
National Instruments(TM) U...

_ / Y-Axis Scaling
I = I Vendor: ni /
— Device ID: Dev1 (O Autoscale
L) \ ® Set Y-Limits
- / AY Min |10
DirectSound Primary Sound... = \ Max [0
//‘ /i
I

o
T

Amplitude (V)
o

Show Legend

J3| Vendor: directsound
\ Device ID: Audio0 Bl

. ; -10 i |
DirectSound Headset Micro... Time (s) Time/Div = 0.01 s
J3| Vendor: directsound

ﬂ. Device ID: Audio Add | ChannellD Name Measurement Type Terminal Config Range | Coupling |
& a0 Devi_a0 Votage Differential - -10to +10 Volis w.pc v B
O ait Woltage Differential « -10to +10 Volts v DC v
O ai2 Woltage Differential w -1010 «10 Vots ~ DC ~
O e Voltage Differential « -1010 +10 Vots « DC ~
] aid Woltage Differential ~ =100 +10 Volts ~ DC ~
] a5 Voltage Differential « -10t0 +10 Voks + DC ~
[a8 Voltage Differential « -10t0 +10 Voks v DC -
O aif Votage Differential « 1010 +10 Volts. w DC ~
O aig Voltage SingleEnded « -10t0 +10 Volts « DC ~
O s Voltage SingleEnded « -10t0 +10 Volts . DC o
O aito Voltage SingleEnded « -1010 +10 Vots ~ DC “
O ain Voltage SingleEnded « -1010 +10 Vots « DC ~
O a2 Voltage SingleEnded « -1010 +10 Vots ~ DC ~
1 aila Wnltane At +10 Vol ne b

Modify any scan and channel settings for your specific needs. The following image shows the app
displaying three channels of the device. Notice that the Max Rate value has changed with the
number of channels; this relationship depends on the device.

6-18

Acquire Data with the Analog Input Recorder

4\ Analog Input Recorder — u] X
ANALOG INPUT RECORDER

Rate (scans/s) 1000 | Duration (5) .1 | Workspace Variable [DAQ_1 (o) m >3
Min Rate 0.1 Number of Scans | 1000 | Record Tt Generate
Max Rate 83333.3333 M Continuous Analyzer Script
CONFIGURE RECORD ANALVZE | CODE =
Device List @ Preview
p N 10
- N /\ P - Plot Tools
National Instruments(TM) U... \ / ? ail
// \ / \ / i ait Y-Axis Scaling
I = Vendor: ni 5 it \ / \ A ag O Autoscale
Device 1D: Dev1 /’ /: ra \ A \ ,//‘ AN
= / / ™ \ A \ \ P / ™ 2
= A, A \ P \ \ / / \ ® Set Y-Limits
- B \ \ Vi .‘/ \ \ / / N \ Min |10
. _ 2o/ T i 71— A
DirectSound Primary Sound... EL '[' ;;‘ \\\ \ ,"I "’f ‘\\ . ;"‘J \.\ \) Max |10
43| vendor: directsound < v / Yo At f" . \ Wi / S oo/
g ||'_‘ Device 10: Audio0 5 / RS \ i e \"\'"
/ / \ \ Show Legend
/ y \ / \
)) i \/ I I \ o I I I b I I h¥
DirectSound Headset Micro... Time (s) Time/Div = 0.01 =
Il,.i[Vendor: directsound
% Device ID: Audio’ Add ChannellD Name Measurement Type Terminal Config Range Coupling
an Devi_ai0 Votage) Differential ~ 1010 +10 Votts ~ DC | &
ait Devi_ail Voltage Differential « -10to +10 Vots ~ DC v
a2 Devi_ai2 Voltage Differential ~ -10to +10 Volts ~ DC v
O ai3 Voltage Differential ~ -10t0+10 Volts ~ DC ~
] aid Voltage Differential ~ -10t0 +10 Volts ~ DC ~
1 ais, Voltage Differential ~ -10to +10 Volts ~ DC ~
O a6 Voltage Differential w -10to +10 Vots w DC v
O aif Volttage Differential « 1010 +10 Vol ~ DC ~
O aig Voltage SingleEnded w -10to +10 Votts w DC v
O a Voltage SingleEnded « -10to +10 Volts ~ DC ~
O ail0 Voltage SingleEnded ~ -10to +10 Volts ~ DC v
O ail1 Voltage SingleEnded ~ -10to +10 Volts ~ DC ~
O ail2 Voltage SingleEnded ~ -10to +10 Volts ~ DC ~
1 Vnttane AR tn +10 Wt ne n

Set values for Number of Scans or Duration, and Rate.

Check Continuous if you want to override the duration or number of scans. In this mode, recording
continues until you explicitly stop it.

When you are ready to start recording data, click Record.

When recording is complete, either because the specified number of scans is recorded or you click
Stop, the recorded data is assigned to the indicated MATLAB Workspace variable. By default, the
variable starts as DAQ 1, and its name is incremented with every recording, but you can specify any
valid MATLAB variable name not already in use. The variable is assigned an M-by-N timetable, where
M table rows is the number of scans and N columns is the number of channels.

The following commands show the beginning of the acquired timetable for a multiple channel
recording.

whos
Name Size Bytes C(lass Attributes
DAQ 1 1000x3 33315 timetable

View the first four rows of the timetable.
DAQ 1(1:4,:)

ans =
4x3 timetable

Time Devl ai0 Devl ail Devl ai2

6-19

6 Analog Input and Output

0 sec 4.0578 -1.9676 5.1516
0.001 sec 2.8081 -2.5671 4.3738
0.002 sec 1.4604 -3.0992 3.4339
0.003 sec 0.029896 -3.5211 2.3651

The timestamp elements of the table are relative to the first scan. The absolute time of the first scan
is available in the timetable TriggerTime custom property. For example,

DAQ 1.Properties.CustomProperties.TriggerTime
datetime

19-Nov-2019 15:21:01.239

In the Analog Input Recorder, click Generate Script for the app to open the MATLAB editor and
display the equivalent code for recording data. The following code is generated for the finite (non-
continuous) 3-channel recording of this example.

Create DataAcquisition Object
Create a DataAcquisition object for the specified vendor.

1 d = dag("ni");

Add Channels

Add channels and set channel properties, if any.

2 addinput(d, "Dev1”," "Voltage");

4 addinput(d,"Devl”,"ail", "Voltage");

6 addinput(d,"Dev1”,"ai2", "Voltage");
Read Data

Read the data in timetable format.

7 DAQ_1 = read(d,seconds(1))

Plot Data
Plot the read data on labeled axes.
8 plot(DAQ 1.Time, DAQ_1.Variables)
] xlabel("Time")
ie ylabel("Amplitude (V)")
11 legend(DAQ_1.Properties.VariableNames)
Clean Up
Clear all DataAcquisition and channel objects.
12 clear d
Apps

Analog Input Recorder | Analog Output Generator

More About
. “Generate Signals with the Analog Output Generator” on page 6-21
. “Timetables” (MATLAB)

6-20

Generate Signals with the Analog Output Generator

Generate Signals with the Analog Output Generator

This topic shows how to use the Analog Output Generator app to define and generate signals from an
audio device.

To open the Analog Output Generator, on the MATLAB Toolstrip, on the Apps tab, in the Test and
Measurement section, click Analog Output Generator.

Analog Output
Generator

Upon opening, the Analog Output Generator attempts to find all your attached analog and audio
output devices.

Note Opening the Analog Output Generator deletes all your existing DataAcquisition interfaces in
MATLAB.

The DataAcquisition interface created by the Analog Output Generator is not accessible from the
MATLAB command line.

If you plug in a device while the app is open, you must refresh the listing for access to that device. On
the Devices tab, click Refresh. Use the same procedure to remove a device from the listing after
unplugging it.

Select the device you want to use in the Device List. By default, the app immediately displays a
preview of a test signal.

Use the following steps to produce an audio output of the "Hallelujah" chorus from Handel's Messiah.

1 Select the device for your output. This might be the primary sound driver, speakers, or a headset.
2 Load the sound data into the workspace with the following command in MATLAB:

load handel

This loads two variables into your workspace. The sound data is contained in array named y. The
sampling rate is contained in the variable Fs. You will need to know the sampling rate, so display
its value.

Fs

8192

3 In the Signal Type section of the Analog Output Generator toolstrip, select Workspace Variable.
In the adjacent selection list, choose y. This indicates the source of the data for the generator to
output.

4 Enter the Fs value of 8192 in the Rate text box in the Analog Output Generator. This indicates
the sampling rate. The app should now look something like this.

6-21

6 Analog Input and Output

4\ Analog Output Generator — m] X
ANALOG QUTPUT GENERATOR

DC Output Rate (scans/s) 8192 Cycle Duration (s) |2.9249 [Continuous [> @
 Test Signal (1000 Hz Sine) Min Rate 8000 Total Duration (5) |8.9249 Number of Cycles
Generate Generate
© Workspace Variable =] Max Rate 132000 Script
SIGNAL TYPE CONFIGURE SIGNAL OUTPUT | CODE =
@ 2
De'wce List i Brcuica
o
DirectSound Primary Sound ... Plot Tools
]
13| Vendor: directsound Sh.uw Leg,.eﬂd
Device ID: Audio2 Y-Axis Scaling
@) Autoscale
o) () Set Y-Limits
©
2 Min [
DirectSound Headset Earph... _g Max [
13| Vendor: directsound = XAuis Scaling
Device ID: Audio3 @) Autoscale
() Set X-Limits
Min [
Max [
DirectSound Speakers (2- Re...
13| Vendor: directsound Time (s)
Device ID: Audiod i
Add | Channelld Name | Output Type Range I Data [scale Offset
1 Audio2_1 Audio ~ -10to+1.0 ~ ¥(1) w1 0
O o Audio v 10to+1.0 v YG1) & 0

DirectSound Speakers (Realt...

13| Vendor: directsound
Device ID: Audio5

DirectSound LEN LT2452pw...

13| Vendor: directsound
Device ID: Audio6

5 Click Generate to produce the sound output.

If you were successful in producing a sound output, try experimenting with some of the settings in
the app. For example, modify the Rate value or the Number of Cycles.

Tip If you could not hear any sound, use the Test Signal option to generate a constant tone. Check
all your hardware connections and different devices in the app until you hear the tone.

In the Analog Output Generator, click Generate Script for the app to open the MATLAB Editor and
display the code for producing the signal. The code is generated for the finite (non-continuous) output
of this example.

6-22

Generate Signals with the Analog Output Generator

Create DataAcquisition Object

Create a DataAcquisition object for the specified vendor.
d = daq("directsound”);

Add Channels

Add channels and set channel properties, if any.
addoutput(d, "Audio2”, 1", " Audio™);

Set DataAcquisition Rate

Set scan rate

d.Rate = 102608;

Define Output Signal

Apply the specified scale and offset on the selected variable.

outputSignal = [];
outputSignal(:,1) = y(:,1) * 1 + @;

Generate Signal

‘Write the signal data.
write(d,outputSignal);

Clean Up

Clear all DataAcquisition and channel objects.

clear d outputSignal

See Also

Apps

Analog Input Recorder | Analog Output Generator

More About
“Acquire Data with the Analog Input Recorder” on page 6-17

6-23

Analog Devices Active Learning Module

7 Analog Devices Active Learning Module

Analog Devices ADALM1000 Hardware

7-2

Data Acquisition Toolbox supports the Analog Devices ADALM1000 active learning module.
ADALM1000 is an inexpensive evaluation platform designed for learning the fundamentals of
electrical engineering. You can download associated teaching materials, reference designs, and lab
projects from the Analog Devices website.

The support package lets you perform the following tasks in MATLAB with the ADALM1000:

* Generate voltages and waveforms, 0 to +5V
* Sink or source current, -200 ma to +200 ma
» Simultaneously source voltage and measure current on the same channel
* Simultaneously source current and measure voltage on the same channel

See Also

More About

. “Generate and Measure Signals with Analog Devices ADALM1000” on page 7-3
. “Analog Devices ADALM1000 Limitations” on page B-6

External Websites
. ADAIM1000 Overview

https://wiki.analog.com/university/tools/m1k

Generate and Measure Signals with Analog Devices ADALM1000

Generate and Measure Signals with Analog Devices
ADALM1000

In this section...
“Updated Function Syntax” on page 7-3
“Source Voltage and Measure Current” on page 7-3

“Generate a Pulse” on page 7-4
“Generate Waveforms” on page 7-5

Updated Function Syntax

To accommodate the ADALM1000, the following Data Acquisition Toolbox functions allow vendor-
specific argument options:

* dag and daqlist accept the vendor argument "adi".

* addinput and addoutput accept the device name argument 'SMU1' (source-measurement unit),
and the channel ID arguments 'A' and 'B' to correspond with the channel labels on the
ADALM1000 module.

Source Voltage and Measure Current

This example shows how to source a voltage while measuring current on the same channel, to
calculate load resistance. First program the ADALM1000 to provide a constant 5 V supply to the load,
and then measure the current on the same device channel.

Discover your ADALM device and view its information.

dev = daqlist("adi")

dev =

1x4 table
DevicelID Description Model DevicelInfo
"SMU1" "Analog Devices Inc. ADALM1000" "ADALM100OO" [1x1 daq.adi.DeviceInfo]

dev{l, "DeviceInfo"}

adi: Analog Devices Inc. ADALM1000 (Device ID: 'SMU1')
Analog input supports:
0 to +5.0 Volts,-0.20 to +0.20 A ranges
Rates from 100000.0 to 100000.0 scans/sec
2 channels ('A','B'")
'Voltage', 'Current' measurement types

Analog output supports:
0 to +5.0 Volts,-0.20 to +0.20 A ranges
Rates from 100000.0 to 100000.0 scans/sec
2 channels ('A','B'")
'Voltage', 'Current' measurement types

Set up a Data Acquisition Toolbox DataAcquisition to operate the ADALM100.

7 Analog Devices Active Learning Module

o
Il

daq("adi")

DataAcquisition using Analog Devices Inc. hardware:

Running: 0
Rate: 100000
NumScansAvailable: 0
NumScansAcquired: 0
NumScansQueued: 0
NumScansOutputByHardware: 0
RateLimit: [100000 100000]

Add an analog output channel to source voltage from device channel A.
addoutput(d, "SMU1","A","Voltage");

Add an analog input channel to measure current on the same device channel A.
addinput(d,"SMUL","A","Current");

View the channel configuration.

d.Channels
ans =
Index Type Device Channel Measurement Type Range Name
1 "ao" “SMU1" "A" "Voltage (SingleEnd)" "0 to +5.0 Volts" "SMU1 A"
2 "ai" “SMU1" "A" "Current" "-0.20 to +0.20 A" "SMU1 A 1"

Generate an output voltage, and measure the current.

V_load = 5;

write(d,V_load);

I load = read(d,"OutputFormat", "Matrix");
write(d,0); % Reset device output.

R load = V_load/I load

R load =

50.3005

Tip The ADALM1000 continues to generate the last value programmed until you release the
hardware. When you are finished with your signals, reset the device to output 0 volts.

Generate a Pulse

This example shows how to generate a 1-millisecond, 5-volt pulse, surrounded on either side by 10
milliseconds at 0 volts.

Column vector of 2100 samples.

pdata = zeros(2100,1);
; Pulse in middle of vector.

pdata (1001:1100) = %
d = daqg("adi");
addoutput(d, "SMU1","B","Voltage");

Generate and Measure Signals with Analog Devices ADALM1000

write(d, pdata)

Generate Waveforms

This example shows how to simultaneously generate a 1-kHz square wave on channel A, and a 100 Hz
sine wave on channel B. Each output lasts for 5 seconds.

The example requires two DataAcquisition channels for device channels A and B, both as output
channels for voltage.

d = daq("adi");

addoutput(d, "SMU1","A","Voltage");
addoutput(d, "SMU1","B","Voltage");

Define the two waveforms.

Sq
Sw

zeros(500000,1); % Column vectors of 500k scans.
zeros(500000,1);

% Define square wave:
for r = 1:100:499900;

Sq(r:r+49) =5; % Set first 50 of each 100 samples to 5 v.
end

% Define sine wave:
w = sin(linspace(1,500000,500000)'*2*pi/1000);
w=5Sw + 1; % Shift for positive voltage output

(275

View channel configuration.

d.Channels
ans =
Index Type Device Channel Measurement Type Range Name
1 "ai" "SMU1" "A" "Voltage (SingleEnd)" "0 to +5.0 Volts" "SMU1_A"
2 "ai" "SMU1" "B" "Voltage (SingleEnd)" "0 to +5.0 Volts" "SMU1l_B"

Start the output signal generation. The 500000 scans at 100000 scans per second lasts for 5 seconds.
write(d, [Sq Sw])
See Also

Functions
addinput | addoutput | daq | read | write

More About
. “Analog Devices ADALM1000 Hardware” on page 7-2
. “Analog Devices ADALM1000 Limitations” on page B-6

External Websites
. ADAIM1000 Overview

7-5

https://wiki.analog.com/university/tools/m1k

Counter Input and Output

* “Analog and Digital Counters” on page 8-2
* “Acquire Counter Input Data” on page 8-3
* “Generate Pulse Data on a Counter Channel” on page 8-6

8 counter Input and Output

Analog and Digital Counters

8-2

Use digital and analog counters to count clock ticks and external events. Counters output a pulse
train, count rising or falling edges, and measure other quantities including:

* Frequency

* Edges

+ PWM

* Position

* Pulse generation

Counters enable timed acquisition and synchronization.

See Also

Related Examples
. “Acquire Counter Input Data” on page 8-3
. “Generate Pulse Data on a Counter Channel” on page 8-6

Acquire Counter Input Data

Acquire Counter Input Data

In this section...

“Add Counter Input Channel” on page 8-3
“Acquire a Single Count” on page 8-3
“Acquire a Single Frequency Count” on page 8-4

“Acquire Counter Input Data in the Foreground” on page 8-4

Add Counter Input Channel

Use addinput to add a channel that acquires edge counts from a device. You can acquire a single
input data or an array by acquiring in the foreground. For more information, see “Interface
Workflow” on page 4-2.

Acquire a Single Count

This example shows how to acquire a single count of falling edges from an NI 9402 with device ID
cDAQ1Mod5. The example assumes that some external source is providing an input to the counter
channel, and that the count is accumulating over time. You can read the accumulated count at one
point in time, then reset the counter and read it again at a later time.

Step 1. Create a DataAcquisition object assigned to the variable d.
d = dag("ni");
Step 2. Add a counter input channel with an edge count measurement type.

ch = addinput(d, "cDAQ1Mod5","ctr0", "EdgeCount")
ch =

Index Type Device Channel Measurement Type Range Name

1 "ci” "cDAQ1Mod5" “ctro" "EdgeCount" "n/a" "cDAQ1Mod5_ctro"

Step 3. Change the channel ActiveEdge property to 'Falling' and view the channel properties to
see the change.

ch.ActiveEdge = 'Falling';
get(ch)

ActiveEdge: Falling
CountDirection: Increment
InitialCount: O
Terminal: 'PFIO'
SampleTimingType: 10388
Name: 'cDAQ1Mod5 ctrO'
ID: 'ctro'
Device: [1x1 dag.ni.DevicelInfo]
MeasurementType: 'EdgeCount'

Step 4. Acquire a single scan reading of the counter buffer.

count = read(d)

8-3

8 Counter Input and Output

count =
133

Step 5. Reset counters from the initial count and acquire an updated count value. This value is the
number of detections since resetting the counter.

resetcounters(d);
count = read(d)

count =

71

Acquire a Single Frequency Count

This example shows how to acquire a single scan of frequency measurement from an NI 9402 with
device ID cDAQ1Mod5.

Step 1. Create a DataAcquisition object.
d = daq("ni");
Step 2. Add a counter channel with a frequency measurement type.

addinput(d, "cDAQ1Mod5","ctr0", "Frequency")

Index Type Device Channel Measurement Type Range Name

1 "ci" "cDAQ1Mod5" "ctro" "Frequency" "n/a" "cDAQ1Mod5 ctrO"
Step 3. Acquire a single scan of counter data.
f = read(d,"OutputFormat", "Matrix")
f =

9.5877e+003

Acquire Counter Input Data in the Foreground

This example shows how to acquire rising edge data from an NI 9402 with device ID cDAQ1Mod5, and
plot the acquired data.

Step 1. Create a DataAcquisition object.
d = daq("ni");
Step 2. Add a counter input channel with an edge count measurement type.

addinput(d, "cDAQ1Mod5","ctr@", "EdgeCount")

Index Type Device Channel Measurement Type Range Name

1 "ci "cDAQ1Mod5" "ctro" "EdgeCount™ "n/a" "cDAQ1Mod5 ctr0"

The counter input channel requires an external clock to perform a foreground acquisition. If you do
not have an external clock, add an analog input channel from a clocked device on the same

8-4

Acquire Counter Input Data

CompactDAQ chassis to the DataAcquisition. This example uses an NI 9205 device on the same
chassis with the device ID cDAQ1Mod1.

Step 3. Add an analog input channel for a voltage measurement type.
addinput(d, "cDAQ1Mod1l","ail","Voltage");
Step 4. Acquire the data and assign it to the variable data, and plot the results.

data = read(d,seconds(1l),"OutputFormat", "Matrix");
plot(data)

The plot displays the results from both channels in the DataAcquisition:

* Edge count measurement
* Analog input data

8 Counter Input and Output

Generate Pulse Data on a Counter Channel

8-6

Add Counter Output Channels

Use addoutput to add a channel that generates pulses on a counter/timer subsystem. You can

generate on one channel or on multiple channels on the same device.

Generate Pulses on a Counter Output Channel

This example shows how to generate pulse data on an NI 9402 with device ID cDAQ1Mod5.
Step 1. Create a DataAcquisition object assigned to the variable d:

d = daq("ni");

Step 2. Add a counter output channel for pulse generation:

ch = addoutput(d, "cDAQ1Mod5",0, "PulseGeneration")

Index Type Device Channel Measurement Type Range Name

1 "co" "cDAQ1Mod5" "ctro" "PulseGeneration" "n/a" "cDAQ1Mod5 ctrO"
Step 3. Configure the output counter channel properties for signal frequency and duty cycle.

ch.Frequency
ch.DutyCycle

50000;
0.25;

Step 4. Generate pulses in the background while MATLAB continues:

start(d, "Continuous")

Step 5. When finished, stop the DataAcquisition output.
stop(d)

See Also

More About

. “Synchronize Counter Outputs from Multiple Devices” on page 13-8

Digital Operations

» “Digital Subsystem Channels” on page 9-2

* “Acquire Non-Clocked Digital Data” on page 9-4

* “Acquire Digital Data Using a Shared Clock” on page 9-5

* “Acquire Digital Data Using an External Clock” on page 9-6

* “Acquire Digital Data Using a Counter Output Channel as External Clock” on page 9-8
* “Acquire Digital Data Using an External Clock via Chassis PFI Terminal” on page 9-11
* “Acquire Digital Data in Hexadecimal Values” on page 9-12

* “Generate Non-Clocked Digital Data” on page 9-13

* “Generate Digital Output Using Decimal Data Across Multiple Lines” on page 9-14

* “Generate and Acquire Data on Bidirectional Channels” on page 9-15

* “Generate Signals on Both Analog and Digital Channels” on page 9-16

9 Digital Operations

Digital Subsystem Channels

9-2

Digital subsystems transfer digital or logical values in bits via digital lines. You can perform clocked
and non-clocked digital operations using the DataAcquisition interface in the Data Acquisition
Toolbox.

Add lines of the digital subsystem as channels to your DataAcquisition using addinput, addoutput,
or addbidirectional. Digital channels can be:

* InputOnly: Allows you to read digital data.
* OutputOnly: Allows you to write digital data.

+ Bidirectional: Allows you to change the direction of the channel to read or write data. You can
set the direction to Input or Qutput. By default the direction is Input.

Digital Clocked Operations

With clocked operations, you can acquire or generate clocked signals at a specified scan rate for a
specified duration or number of scans. These operations use hardware timing to acquire or generate
at specific times. The operation is controlled by events tied to subsystem clocks. In a clocked
acquisition, data is transferred from the device to your system memory and displays when the event
calls for the data. In signal generation, data generated from the device is stored in memory until the
configured event occurs. When an event occurs, data is sent via the digital channels to the specified
devices.

Digital systems do not inherently have a clock. You can synchronize data by adding a clock in one of
these ways:

* Ifyou have an on-board clock on your device, you can import the clock to the DataAcquisition.

External digital DataAcquisition
circuit

Digital subsystem

S =

* Ifyour device does not have an on-board clock you can:

* Import a clock from an external source. See “Acquire Digital Data Using an External Clock” on
page 9-6 for more information.

* Generate a clock from a Counter Output subsystem in your DataAcquisition and import that
clock. See “Acquire Digital Data Using a Counter Output Channel as External Clock” on page 9-
8 for more information.

* Share a clock from the analog input subsystem. See “Acquire Digital Data Using a Shared
Clock” on page 9-5 for more information.

Digital Subsystem Channels

Access Digital Subsystem Information

This example shows how to access the device digital subsystem information and find line and port
information using daglist.

Find devices connected to your system and find the NI model USB-6509 device.

dev = daglist("ni")

dev =
2x4 table
DeviceID Description Model DeviceInfo
"Dev2" "National Instruments(TM) USB-6509" "USB-6509" [1x1 dag.ni.DeviceInfo]
"Dev3" "National Instruments(TM) USB-6211" "USB-6211" [1x1 dag.ni.DeviceInfo]

View the subsystem information in the DeviceInfo for Dev2 using index 1.
DevInf = dev.DeviceInfo(1)

DevInf =

ni: National Instruments(TM) USB-6509 (Device ID: 'Dev2')
Digital IO supports:
96 channels ('port0/line@' - 'port9/line7')
'"InputOnly', 'OutputOnly', 'Bidirectional' measurement types

9-3

9 Digital Operations

Acquire Non-Clocked Digital Data

9-4

This example shows how to read digital data using two channels on an NI USB-6255

Discover NI devices connected to your system and find the ID for the NI 6255:

dev = daqlist("ni")

dev =
3x4 table
DeviceID Description Model DeviceInfo
"Devl" "National Instruments(TM) USB-6255" "USB-6255" [1x1 dag.ni.DeviceInfo]
"Dev2" "National Instruments(TM) USB-6509" "USB-6509" [1x1 dag.ni.DeviceInfo]
"Dev3" "National Instruments(TM) USB-6211" "USB-6211" [1x1 dag.ni.DeviceInfo]

Create a DataAcquisition object and add two input lines from port 0 on Dev1:

d = daq("ni");
ch = addinput(d, "Devl","Port0/Line@:1","Digital")

ch =
Index Type Device Channel Measurement Type Range Name
1 "dio" "Devl" "port0/lined®" "InputOnly" "n/a" "Devl port0/lined"
2 "dio" "Devl" "port0/linel" "InputOnly" "n/a" "Devl port0/linel"

Acquire a single scan of digital data from both channels:
data = read(d, "OutputFormat","Matrix")

data

Acquire Digital Data Using a Shared Clock

Acquire Digital Data Using a Shared Clock

This example shows how to share the clock with the analog input subsystem on your device with the
digital subsystem to acquire clocked data that is automatically synchronized. You do not need any
physical connections to share the clock. For more information, see “Automatic Synchronization” on
page 13-4.

Create a DataAcquisition object and add a digital input line from port 0 line © on Dev1.

d = daq("ni");
addinput(d, "Devl","Port0/Line0","Digital")

Note Not all devices support clocked digital I/O operations with hardware timing. For these devices
you can use software timed operations with single scan calls to read and write.

Devices that support clocked digital I/O operations might not support them on all ports. Check your
device specifications.

Add an analog input channel to your DataAcquisition.

addinput(d, "Devl",0,"Voltage");

d.Channels
ans =
Index Type Device Channel Measurement Type Range Name
1 "dio" "Devl" "port0/lined" "InputOnly" "n/a" "Devl port®/lined"
2 "ai" "Devl" "aig" "Voltage (Diff)" "-10 to +10 Volts" "Devl ai®"

Read and plot the acquired digital data. The device acquires digital data at the scan rate determined
by its analog subsystem.

dataln = read(d,seconds(1l),"OutputFormat","Matrix");
plot(dataIn(1:100,1)) % Column 1 is data from the the first channel.

See Also

Related Examples
. “Acquire Digital Data Using an External Clock” on page 9-6
. “Acquire Digital Data Using a Counter Output Channel as External Clock” on page 9-8

More About

. “Synchronization” on page 13-2

9 Digital Operations

Acquire Digital Data Using an External Clock

9-6

This example shows how to acquire digital data in the foreground by using an external scan clock.

External digital DataAcquisition
circuit <]

1k

Digital subsystem

> >

External Clock 4

ot

You can use a function generator or the on-board clock from a digital circuit. Here, a function
generator is physically wired to terminal PFI9 on device NI 6255.

Create a DataAcquisition object and add a output line at port 0 line 2 on Dev1.

d = dag("ni");
ch = addinput(d, "Devl","Port0/Line2","Digital")

ch =

Index Type Device Channel Measurement Type Range Name

1 "dio" "Devl" "port0/line2" "InputOnly" "n/a" "Devl port0/line2"

Note Not all devices support clocked digital I/O operations with hardware timing. For these devices
you can use software timed operations with single scan calls to read and write.

Devices that support clocked digital I/O operations might not support them on all ports. Check your
device specifications.

Set the rate of your DataAcquisition to the expected rate of your external scan clock.

d.Rate = 1000;

Note Importing an external clock does not automatically set the scan rate of your DataAcquisition.
Manually set the DataAcquisition Rate property value to match the expected external clock
frequency.

Programmatically add a scan clock to your DataAcquisition, indicating the source as external and the
target as device terminal PFI9.

clk

addclock(d, "ScanClock", "External", "Devl/PFI9")
clk =

Clock with properties:

Acquire Digital Data Using an External Clock

Source: 'External'
Destination: 'Devl1/PFI9'
Type: ScanClock

Acquire clocked digital data and plot it.

dataln = read(d,seconds(1),"OutputFormat", "Matrix");
plot(dataIn(1:100,1))

See Also

Related Examples
. “Acquire Digital Data Using a Shared Clock” on page 9-5
. “Acquire Digital Data Using a Counter Output Channel as External Clock” on page 9-8

9 Digital Operations

Acquire Digital Data Using a Counter Output Channel as
External Clock

This example shows how to use a device counter output channel to generate pulses for an external
clock in acquiring

e p———— Counter Pulse | DataAcquisition
xtemal digita)
circult Generation
<] -« —H Ly
I Digital subsystem
|
Key: L e — — — — —] [
— — Intermal connection
— External wiring

In this example, you generate a clock in one DataAcquisition using a counter output channel and
export the clock to another DataAcquisition that acquires digital data. The counter output and the
digital subsystem can be on the same device or on different devices.

Note Importing an external clock does not automatically set the scan rate of your DataAcquisition.
Manually set the DataAcquisition Rate property value to match the expected external clock
frequency.

Generate a Clock Using a Counter Output Channel

Create a clocked DataAcquisition with a counter output channel that continuously generates
frequency pulses in the background. You can use this channel as an external clock for a clocked
digital acquisition.

Define the clock frequency to be used for synchronizing the scan rate of your counter output as well
as the rate of your digital acquisition.

clockFreq = 100;

Create a DataAcquisition object and add a counter output channel for PulseGeneration
measurement type.

daqClk = daqg("ni");
chl = addoutput(daqClk, "Devl1l","ctr@","PulseGeneration");

Tip Make sure the counter channel you add is not being used in a different DataAcquisition,
otherwise a terminal conflict error occurs.

Save the counter output terminal ID to a variable so you can use it later to specify the external clock
that synchronizes your digital clocked operations.

9-8

Acquire Digital Data Using a Counter Output Channel as External Clock

clkTerminal = chl.Terminal;

Set the frequency of your counter channel to the clock frequency.

chl.Frequency = clockFreq;

Use Counter Clock to Acquire Clocked Digital Data

Create a DataAcquisition for digital input and import the external clock from the clock
DataAcquisition.

Create a DataAcquisition and add a digital input line from port 0 line 2 on Dev1.

dagDgt = daq("ni");
addDigitalChannel(daqgDgt, "Devl", "Port0/Line2","InputOnly")

Note Not all devices support clocked digital I/O operations with hardware timing. For these devices
you can use software timed operations with single scan calls to read and write.

Devices that support clocked digital I/O operations might not support them on all ports. Check your
device specifications.

Tip PFI terminal resources might be shared. Check your device routing in the NI MAX app.

Set the DataAcquisition scan rate to the same value as the rate of the counter output channel.

dagDgt.Rate = clockFreq;

Import the clock from your clock DataAcquisition to synchronize your acquisition.

addclock(dagDgt, "ScanClock", "External",clkTerminal)

Start the counter output channel to run continuously in the background.

start(daqClk, "Continuous")
Pulse generation begins immediately on the counter output. It does not need data.

Acquire and plot digital input data.

dataln = read(dagqDgt,seconds(1l),"OutputFormat","Matrix");
plot(dataIn(1:100,1))

Stop the clock DataAcquisition.

stop(daqClk)
See Also

Related Examples
. “Acquire Digital Data Using a Shared Clock” on page 9-5

9-9

9 Digital Operations

. “Acquire Digital Data Using an External Clock” on page 9-6

9-10

Acquire Digital Data Using an External Clock via Chassis PFl Terminal

Acquire Digital Data Using an External Clock via Chassis PFI
Terminal

This example shows how to acquire clocked digital data using an external clock provided at the
CompactDAQ chassis PFI terminal. It uses a cDAQ 9178 chassis and NI 9402 module with ID
cDAQ2Mod3. A digital signal is connected to the module PFI0 terminal to provide a scan clock.

Create a DataAcquisition object and add the digital input line.

d = daq("ni");
addinput(d, "cDAQ2Mod3","Port0/Line@","Digital");

Add a clock specifying source and destination. Then set the DataAcquisition scan rate to match the
external clock frequency.

addclock(d, "ScanClock", "External", "cDAQ2/PFIO");
d.Rate = 100e3;

Acquire and plot the digital input data.

[data, timestamps] = read(d,seconds(1l),"OutputFormat","Matrix");
plot(timestamps,data(1:100,1))

See Also

9-11

9 Digital Operations

Acquire Digital Data in Hexadecimal Values

This example shows how to acquire digital data using four channels on an NI 6255.

Discover devices connected to your system and find the ID for the NI 6255.

dev = daqglist
dev =
3x4 table

DeviceID Description Model DeviceInfo

"Devl" "National Instruments(TM) USB-6255" "USB-6255" [1x1 dag.ni.DeviceInfo]
"Dev2" "National Instruments(TM) USB-6363" "USB-6363" [1x1 dag.ni.DeviceInfo]

Create a DataAcquisition and add four digital input lines from port 0 on Dev1.

d = daq("ni");
addinput(d, "Devl","Port0/Line0®:3","Digital");

d.Channels
ans =
Index Type Device Channel Measurement Type Range Name
1 "dio" "Devl" "port0/lined®" "InputOnly" "n/a" "Devl port0/lined"
2 "dio" "Devl" "port0/linel" "InputOnly" "n/a" "Devl port0/linel"
3 "dio" "Devl" "port0/line2" "InputOnly" "n/a" "Devl port0/line2"
4 "dio" "Devl" "port0/line3" "InputOnly" "n/a" "Devl port0/line3"

Acquire digital data in hexadecimal values.
hData = binaryVectorToHex(read(d, "OutputFormat", "Matrix"))

hData

|C|

9-12

Generate Non-Clocked Digital Data

Generate Non-Clocked Digital Data

This example shows how to write data to two lines on an NI 6255.

Discover NI devices connected to your system and find the ID for the NI 6255.
d = daqlist("ni")
dev =

3x4 table

DeviceID Description Model DeviceInfo

"Devl" "National Instruments(TM) USB-6255" "USB-6255" [1x1 dag.ni.DeviceInfo]
"Dev2" "National Instruments(TM) USB-6363" "USB-6363" [1x1 dag.ni.DeviceInfo]

Create a DataAcquisition object and add two digital output lines from port 0 on Dev1l.

d = daq("ni");
addoutput(d, "Devl","Port0/Line0®:1","Digital");

d.Channels
ans =
Index Type Device Channel Measurement Type Range Name
1 "dio" "Devl" "port0/lined" "OQutputOnly" "n/a" "Devl port0/lined"
2 "dio" "Devl" "port0/linel" "OQutputOnly" "n/a" "Devl port0/linel"

Generate digital output.

write(d,[1 0])

9-13

9 Digital Operations

Generate Digital Output Using Decimal Data Across Multiple

Lines

9-14

This example shows how to convert decimal data and output to two lines on an NI 6255.

Discover NI devices connected to your system and find the ID for the NI 6255.
d = daqlist("ni")

dev =
3x4 table

DeviceID Description Model DeviceInfo

"Devl" "National Instruments(TM) USB-6255" "USB-6255" [1x1 dag.ni.DeviceInfo]
"Dev2" "National Instruments(TM) USB-6363" "USB-6363" [1x1 dag.ni.DeviceInfo]

Create a DataAcquisition and add two digital output lines from port © on Dev1l.

d = daq("ni");
addoutput(d, "Devl","Port0/Line0®:1","Digital");

d.Channels
ans =
Index Type Device Channel Measurement Type Range Name
1 "dio" "Devl" "port0/lined" "OQutputOnly" "n/a" "Devl port0/lined"
2 "dio" "Devl" "port0/linel" "OQutputOnly" "n/a" "Devl port0/linel"

Convert the decimal number 2 to a binary vector, and generate that digital output value on the two
lines.

write(d,decimalToBinaryVector(2))

Generate and Acquire Data on Bidirectional Channels

Generate and Acquire Data on Bidirectional Channels

This example shows how to use a bidirectional channel and read and write data using the same two
lines on an NI 6255.

Discover NI devices connected to your system and find the ID for the NI 6255.
d = daqlist("ni")
dev =

3x4 table

DeviceID Description Model DeviceInfo

"Devl" "National Instruments(TM) USB-6255" "USB-6255" [1x1 dag.ni.DeviceInfo]
"Dev2" "National Instruments(TM) USB-6363" "USB-6363" [1x1 dag.ni.DeviceInfo]

Create a DataAcquisition and add two lines from port 0 and 2 lines from port 1 on Devl.
d = daq("ni");

addbidirectional(d, "Devl","Port0/Line0®:1","Digital");
addbidirectional(d, "Devl","Portl/Line0:1","Digital");

d.Channels
ans =
Index Type Device Channel Measurement Type Range Name
1 "dio" "Devl" "port0/lined" "Bidirectional (Input)" "n/a" "Devl port0/line0d"
2 "dio" "Devl" "port0/linel" "Bidirectional (Input)" "n/a" "Devl port0/linel"
3 "dio" "Devl" "portl/line@" "Bidirectional (Input)" "n/a" "Devl portl/line@"
4 "dio" "Devl" "portl/linel" "Bidirectional (Input)" "n/a" "Devl portl/linel"

Set the direction on all channels to output data.
set(d.Channels, "Direction", "Output");
Generate the digital output data.

write(d,[1 0 1 0])

Change the direction on all channels to input data
set(d.Channels, "Direction","Input");
Acquire the digital data.

read(d, "OutputFormat", "Matrix")

ans =

9-15

9 Digital Operations

Generate Signals on Both Analog and Digital Channels

This example shows how to generate signals when the DataAcquisition contains both analog and
digital channels.

Discover NI devices connected to your system and find the ID for the NI 6255.
d = daqlist("ni")
dev =

3x4 table

DeviceID Description Model DeviceInfo

"Devl" "National Instruments(TM) USB-6255" "USB-6255" [1x1 dag.ni.DeviceInfo]
"Dev2" "National Instruments(TM) USB-6363" "USB-6363" [1x1 dag.ni.DeviceInfo]

Create a DataAcquisition and add two digital output lines from port © on Dev1l.

d = daq("ni");
addoutput(d, "Devl","Port0@/Line®:1","Digital")

Add an analog output channel from Devl, then view all channels.

addoutput(d, 'Devl’',0, 'Voltage')

d.Channels
ans =
Index Type Device Channel Measurement Type Range Name
1 "dio" "Devl" "port®/lined" "QutputOnly" "n/a" "Devl port0/lined"
2 "dio" "Devl" "port®/linel" "QutputOnly" "n/a" "Devl port0/linel"
3 "ao" "Devl" "ao00" "Voltage (SingleEnd)" "-10 to +10 Volts" "Devl_ao0"

Output a single scan of data on both the digital and analog channels.

write(d, [decimalToBinaryVector(2), 1.231])

9-16

Multichannel Audio

10 Multichannel Audio

Audio Input and Output

10-2

You can acquire and generate audio signals using one or more available channels of a supported
audio device. You can also simultaneously operate channels on multiple supported audio devices.
Data Acquisition Toolbox supports audio channels for devices that work with the DirectSound

interface. You can:

* Acquire and generate audio signals either in sequence or as separate operations.

* Acquire and generate signals simultaneously where the signals may share their start time.

* Acquire audio data in the background and filter or process the input data simultaneously. You can
generate data immediately in response to the processed input data. In this case, both the
acquisition and generation operations start and stop together.

Data Acquisition Toolbox does not read directly from or write directly to audio files using the

multichannel audio feature. Instead, use the MATLAB functions audioread and audiowrite.

Multichannel Audio Scan Rate

The Rate of an audio DataAcquisition is the scan rate at which it samples audio data. All channels in
a DataAcquisition have the same scan rate. The default DataAcquisition rate for an audio
DataAcquisition is 44100 Hz. If you have multiple devices in the DataAcquisition, make sure that they
can all operate at a common scan rate.

Audio Measurement Range

Data you acquire or generate using audio channels contains double-precision values. These values

are normalized to the range of -1 to +1. The DataAcquisition represents data acquired or generated
in amplitude without units.

Acquire Audio Data

This example shows how to acquire audio data for seven seconds and plot the result.

Discover DirectSound audio devices installed on your system and create a DataAcquisition for these

devices.

dev = daqlist;

dev =
4x4 table
DeviceID
"Audio0@"
"Audiol"

"Audio2"
"Audio3"

Description

"DirectSound Primary Sound Capture Driver"
"DirectSound Headset Microphone (Plantronics BT600)"
"DirectSound Primary Sound Driver"

"DirectSound Headset Earphone (Plantronics BT660)"

d = daqg("directsound")

DataAcquisition using DirectSound hardware:

Model

"Primary Sound Capture Driver"

"Headset Microphone (Plantronics BT600)"
"Primary Sound Driver"

"Headset Earphone (Plantronics BT600)"

[
[
[
[

DeviceInfo

1x1 daq.
1x1 daq.
1x1 daq.
1x1 daq.

audio.Devic
audio.Devic
audio.Devic
audio.Devic

Audio Input and Output

Running: 0
Rate: 44100
NumScansAvailable: 0
NumScansAcquired: 0
NumScansQueued: 0
NumScansOutputByHardware: 0
RateLimit: []

Add an audio input channel for the microphone with id Audiol. The measurement type is Audio.
addinput(d, "Audiol",1,"Audio");
ch =

Index Type Device Channel Measurement Type Range Name

1 "audi" "Audiol" " "Audio" "-1.0 to +1.0" "Audiol 1"
Acquire 7 seconds of data in the foreground and plot the data versus time.

[data,t] = read(d, seconds(7), "OutputFormat","Matrix");
plot(t,data)

10-3

10 Multichannel Audio

=10l x|
File Edit Wiew Insert Tools Desktop Window Help 1u

NEES LRATDEL-B|0EaO

D.B T T T T T T

0.6

04

0.2

See Also

Related Examples
. “Generate Audio Signals”

10-4

Waveform Function Generation

* “Digilent Analog Discovery Devices” on page 11-2

» “Digilent Function Waveform Generator Channels” on page 11-3

* “Waveform Types” on page 11-5

* “Generate a Standard Waveform Using Function Waveform Generator Channels” on page 11-8

11 Waveform Function Generation

Digilent Analog Discovery Devices

11-2

MATLAB supports the Digilent Analog Discovery design kit, a low-cost, portable USB DAQ device. The
kit enables project-based learning for analog circuit design. For professors and course instructors,
the kit comes with downloadable teaching materials, reference designs, and lab projects.

The Data Acquisition Toolbox Support Package for Digilent Analog Discovery hardware lets you
perform the following tasks in MATLAB:

Read data from oscilloscope channels.

Control and generate data from waveform generators.

Characterize ICs and measure behavior of the circuit and IC components.
Configure the sampling rate of the Analog Discovery device.

Trigger the start of your data acquisition.

Find and display Digilent Analog Discovery device settings.

See Also

Related Examples

“Getting Started Acquiring Data with Digilent Analog Discovery”
“Getting Started Generating Data with Digilent® Analog Discovery™”

More About

“Install Hardware Support Package for Vendor Support” on page 5-2

Digilent Function Waveform Generator Channels

Digilent Function Waveform Generator Channels

Waveform function generator channels on a Digilent device can generate both standard and arbitrary
function waveforms. For more information, see “Waveform Types” on page 11-5. This diagram

shows the pin configuration on a typical Digilent Analog Discovery device. The yellow and the yellow/
white lines represent the waveform generator channels, marked as W1 and W2 on the device.

Trigaer In
Ground
Waveform Generator 1

W+ Power Supply (+5VD0C)

Ground

Scope Channel 2 Positive
Scope Channel 1 Positive I
1

Digital 110 Signals

1
2 3 5 & T

2
] 0

1- 2- ¥ V-W24H TO 8 9 1011 12 13 14 15

1+ 2+ 4 W+Wi4 T O

Scope Channel 1 Megative
Scope Channel 2 Megative I |
Ground '
V- Power Supply (-5VDC) Digital 110 Signals
Waveform Generator 2
Ground
Trigaer In

To test the Analog Discovery device, create the following connection to acquire the generated
waveform, and use it with the corresponding code:

1+ (scope channel 1 positive) to WI through a 1K resistor.
* 1— (scope channel 1 negative) W2 to GND.

This diagram depicts these connections on a breadboard.

11-3

11 Waveform Function Generation

11-4

Waveform Generator 1

kO

Scope Channel 1 Paositive

Ground
]

Scope Channel 1 Megative

Unlike analog input channels, the waveform generator channels control their own frequency. If your
DataAcquisition contains both waveform generator channels and any other type of acquisition
channels, the waveform generator channels will have their own frequency and all other channels will
inherit the DataAcquisition scan rate. If you have analog input channels in the DataAcquisition with
waveform generator channels, the analog input channels start first and act as a trigger for the
waveform generator channels.

See Also

Related Examples

. “Generate Standard Periodic Waveforms Using Digilent Analog Discovery”
. “Generate Arbitrary Periodic Waveforms Using Digilent Analog Discovery”
More About

. “Waveform Types” on page 11-5

Waveform Types

Waveform Types

Digilent Analog Discovery devices support generation of arbitrary waveforms, standard waveforms,
or both. If your device supports standard waveforms, you can set the gain, offset, and frequency to
control the output. Standard waveform types include:

Sine
Square
Triangle
RampUp
RampDown
DC

You can control the behavior of different waveform types using the associated properties. This table
shows you which properties work with the supported waveform types for Digilent devices.

Frequency Gain Offset Phase DutyCycle
Sine v v v v
Square v v v v v
Triangle v v v v v
RampUp v v v v v
RampDown v v v v v
DC v
Arbitrary v

This diagram illustrates how these properties affect a standard square waveform.

11-5

11 Waveform Function Generation

Criginal

DutyCycle

Gain

Offset

Phase

11-6

Waveform Types

Standard waveforms cannot be clipped. You must keep gain and offset values so that the waveform
amplitude remains within voltage range. You cannot change gain and offset of arbitrary waveforms.

See Also

Related Examples

. “Generate Standard Periodic Waveforms Using Digilent Analog Discovery”
. “Generate Arbitrary Periodic Waveforms Using Digilent Analog Discovery”
More About

. “Digilent Function Waveform Generator Channels” on page 11-3

11-7

11 Waveform Function Generation

Generate a Standard Waveform Using Function Waveform
Generator Channels

This example shows how to use the function generator channel in a DataAcquisition to generate a
sine function waveform at a frequency of 100 kHz. The signal output voltage range is specified as
-5.0 to +5.0 volts

Discover available Digilent devices.
dev = daqlist("digilent")
dev =

1x4 table

DevicelID Description Model DevicelInfo

"AD1" "Digilent Inc. Analog Discovery 2 Kit Rev. C" "Analog Discovery 2" [1x1 daq.di.DeviceInfo]
Create a DataAcquisition object for Digilent devices.
d = daq("digilent")
d =

DataAcquisition using Digilent Inc. hardware:

Running: 0

Rate: 10000
NumScansAvailable: 0
NumScansAcquired: 0
NumScansQueued: 0
NumScansOutputByHardware: 0
RateLimit: []

Add a waveform function generator channel for device AD1 with a Sine waveform type.
fgenCh = addoutput(d,"AD1",1,"Sine")

fgenCh =

Index Type Device Channel Measurement Type Range Name
1 "fgen" "AD1" " "Sine" "-5.0 to +5.0 Volts" "AD1 1 fgen"

Set the channel amplitude to 5 v using the Gain property and the channel frequency to 100 kHz.

fgenCh.Gain = 5;
fgenCh.Frequency = 100e3;

Specify the output duration to run for 5 seconds and start the generation.

write(d,seconds(5))
See Also

Related Examples
. “Generate Standard Periodic Waveforms Using Digilent Analog Discovery”
. “Generate Arbitrary Periodic Waveforms Using Digilent Analog Discovery”

11-8

Triggers and Clocks

+ “Trigger Connections” on page 12-2
* “Acquire Voltage Data Using a Digital Trigger” on page 12-4
* “Clock Connections” on page 12-5

12 Triggers and Clocks

Trigger Connections

In this section...

“When to Use Triggers” on page 12-2

“External Triggering” on page 12-2

When to Use Triggers

Use triggers to simultaneously start all devices in the DataAcquisition. You connect a trigger source
to a trigger destination. A trigger source can be either external, where the trigger comes from a
source outside a DataAcquisition, or on a device and terminal pair within a DataAcquisition. Trigger
destination devices can be external, where the signals are received outside the DataAcquisition, or
devices within the DataAcquisition. For more information, see “Source and Destination Devices” on
page 13-3.

Note You can have multiple destinations for your trigger, but only one source.

DataAcquisition

Trigger
destinations

Trigger source
[

Note You cannot use trigger and clock connections with audio channels.

External Triggering

You can configure devices in a DataAcquisition to receive an external trigger. To use an external
trigger source, your connection parameters must correctly specify the exact device and terminal
pairs to which the external source is connected. Two circumstances of externally clocked and
triggered synchronization are:

12-2

Trigger Connections

* An external hardware event that controls the operation of one or more devices in a
DataAcquisition object. For example, opening and closing a switch starts a background acquisition
on a DataAcquisition.

* An external hardware event synchronizes multiple devices in a DataAcquisition. For example,
opening and closing of a switch starts a background operation across multiple devices or
CompactDAQ chassis in a DataAcquisition.

See Also

Related Examples

. “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7

. “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-12
. “Acquire Voltage Data Using a Digital Trigger” on page 12-4

More About

. “Synchronization” on page 13-2

12-3

12 Triggers and Clocks

Acquire Voltage Data Using a Digital Trigger

This example shows how to use a falling edge digital trigger, which occurs when a switch closes on an
external source. The trigger is connected to terminal PFIO on device Dev1 and starts acquiring
sensor voltage data.

Create a DataAcquisition object for NI devices.

d = daqg("ni");
Add a voltage input channel from NI USB-6211 with device ID Dev1.
addinput(d, "Devl",0,"Voltage")

Physically connect the switch to terminal PFIO on NI USB-6211. The trigger comes from the switch,
which is an external source. Programmatically add the trigger to the DataAcquisition, indicating
source, destination, and device PFI terminal.

t = addtrigger(d,"Digital",d.Triggers"StartTrigger","External”, "Devl/PFIO")
t =
DigitalTrigger with properties:

Source: 'External'

Destination: 'Devl1/PFIO'
Type: StartTrigger
Condition: 'RisingEdge’

Set the trigger Condition property to 'FallingEdge'.
t.Condition = 'FallingEdge’;

Acquire data and store it in dataIn. The DataAcquisition waits for the trigger to occur, and starts
acquiring data when the switch closes.

dataln = read(d,seconds(1l),"OutputFormat", "Matrix");
See Also

Related Examples
. “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7
. “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-12

More About
. “Synchronization” on page 13-2
. “Trigger Connections” on page 12-2

12-4

Clock Connections

Clock Connections

In this section...
“When to Use Clocks” on page 12-5
“Import Scan Clock from External Source” on page 12-5

“Export Scan Clock to External System” on page 12-5

When to Use Clocks

Use clocks to synchronize operations on all connected devices in the DataAcquisition. You connect a
clock source to a clock destination. A clock source can be either external, where the clock signal
comes from a source outside a DataAcquisition, or on a device and terminal pair within a
DataAcquisition. Destination devices can be external, where the signals are received outside the
DataAcquisition, or devices within the DataAcquisition. For more information, see “Source and
Destination Devices” on page 13-3.

Note You cannot use trigger and clock connections with audio channels.

Import Scan Clock from External Source

To import a scan clock from an external source, you must connect the external clock to a terminal and
device pair on a device in your DataAcquisition. Two circumstances of externally clocked
synchronization include:

* Synchronizing operations on all devices within a DataAcquisition by sharing the clock on a device
within the DataAcquisition or an external clock

* Synchronizing operations on all devices within a DataAcquisition and some external devices, by
sharing an external clock

Note Importing an external clock does not automatically set the scan rate of your DataAcquisition.
Manually set the DataAcquisition Rate property value to match the expected external clock
frequency.

Export Scan Clock to External System

This example shows how to add a scan clock to a device and output the clock to a device outside your
DataAcquisition, which is connected to an oscilloscope. The scan clock controls the operations on the
external device.

Create a DataAcquisition and add a voltage input channel from an NI USB-6211 with device ID Dev1l.

d = daq("ni");
addinput(d, "Devl",0,"Voltage")

Add a clock to the DataAcquisition, to export an external scan clock sourced at terminal PFI6 on
Dev1, and physically connect it to an external destination.

¢ = addclock(d,"ScanClock","Devl/PFI6","External")

12-5

12 Triggers and Clocks

C =
Clock with properties:

Source: 'Devl/PFI6'
Destination: 'External'
Type: ScanClock

Acquire data and store it in dataIn.

dataln = read(d,seconds(1l),"OutputFormat","Matrix");

See Also

Related Examples

. “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7
. “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-12

More About

. “Synchronization” on page 13-2

12-6

Synchronization

* “Synchronization” on page 13-2

* “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7

* “Synchronize with PFI on CompactDAQ Chassis Without Terminals” on page 13-11
» “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-12

* “Synchronize DSA Devices” on page 13-13

13 Synchronization

Synchronization

Synchronization of data acquisition operations between multiple channels or devices has two aspects:

» Start trigger: The signal to initiate all operations
* Scan clock: The timing for repeated generation or acquisition of signals at a clocked rate

Synchronization can involve the coordination of triggering, clocking, or both. To synchronize the start
of operations on multiple channels or devices, they must use a shared start trigger. To synchronize
the clocked scanning operations on multiple channels or devices, they must use a shared scan clock.

The following definitions summarize some concepts of synchronization:

Type of Synchronization Description

Start trigger synchronization Channels or devices are configured to simultaneously start their
operations from a shared start trigger.

Scan clock synchronization Channels or devices use a shared scan clock to generate or
measure signals.

Perfect synchronization Channels or devices use both a shared start trigger and a shared
scan clock. This does not imply a specific skew or latency
performance between devices or between channels on a device.

Automatic synchronization The default start trigger synchronization and scan clock
synchronization supported by a DataAcquisition, the driver, and
the hardware. This is the extent of synchronization provided by a
DataAcquisition without any explicit synchronization configuration.

When a DataAcquisition starts, it sends a start trigger signal to all
connected channels in the DataAcquisition. The driver and device
might support synchronization from that moment forward. For
example, in some devices all channels use the same internal scan
clock and a shared start trigger, so they are automatically
synchronized without further configuration of the DataAcquisition.

Shared Triggers and Shared Scan Clocks

Typical data acquisition devices provide synchronization between their channels of the same
subsystem. For example, all the analog input channels on one card use a shared scan clock. A
DataAcquisition can configure start trigger and scan clock connections for wider synchronization
needs. Use shared start triggers and shared scan clocks to synchronize data between:

* Multiple subsystems in a device (analog input, analog output, counter input, etc.)
* Multiple devices
* Multiple CompactDAQ or PXI chassis

Note Counter output channels run independently and are unaffected by synchronization connections.

13-2

Synchronization

Source and Destination Devices

You can share start triggers and scan clock connections to synchronize operations within a
DataAcquisition. Synchronization connections can be:

* Devices in a DataAcquisition connected to a start trigger or scan clock source on another device in
the DataAcquisition

DataAcquisition

Trigger or clock
destinations

Trigger or clock
source

Devices and chassis in a DataAcquisition connected to a start trigger or scan clock source on
another device in the DataAcquisition

DataAcquisition

Trigger or clock
destinations

Trigger Source

=S

CompactDAQ
chassis

13-3

13 Synchronization

A source device and terminal pair generates the synchronization signal and is connected to the
destination device and terminal pairs. You must physically connect the source and destination
terminals, unless they are internally connected. Check your device specifications for more
information. Synchronization connections are added from the source device to one or more
destination devices.

* The source device provides the start trigger or scan clock signals.
* The destination device receives a start trigger or scan clock signal.

For example, if you determine that a terminal on Dev1 will provide a start trigger and a terminal on
Dev2 will receive that trigger, then Dev1 becomes your source device and Dev2 your destination
device. You can have multiple destinations for your trigger and clock connections, but only one
source.

Use addtrigger to add start trigger connections, and addclock to add a scan clock connection to
your DataAcquisition.

Automatic Synchronization

In most cases, a DataAcquisition automatically starts all its devices at the same time when you start
an operation. You must configure them to start synchronously when devices are not on a single
chassis and do not share a clock. If you have not configured synchronization on such devices, the
start operation reduces the latency between devices, running them very close together to achieve
near-simultaneous signals. However, devices are automatically and perfectly synchronized in the
DataAcquisition if they are:

* Subsystems on a single device in the DataAcquisition. This synchronizes your analog input, analog
output, and counter input channels.

Note Counter output channels run independently and are unaffected by synchronization
connections.

* Modules on a single CompactDAQ chassis in the DataAcquisition.

* PXI modules synchronized with a reference clock on a PXI chassis. For perfect synchronization,
you must share a trigger as well. See “Acquire Synchronized Data Using PXI Devices” on page 13-
9 for more information.

Synchronization Scenarios

You must employ different techniques for synchronization, depending on the configurations of your
channels, devices, and chassis. The following sections describe these different scenarios.

Multiple Channels on the Same Device or Module

In this topic, hardware that performs the signal conversion when not plugged into a chassis is
referred to as a device; this includes USB devices. When the conversion hardware is a card plugged
into a chassis, it is usually referred to as a module.

Data Acquisition Toolbox DataAcquisition software is based on the assumption that all channels of the
same acquisition device or module use the same internal scan clock and start trigger. As such, these
channels meet the requirements for perfect synchronization. For most vendors, this includes digital
channels, analog channels, and counter input channels, but does not include counter output channels.

13-4

Synchronization

The following topics illustrate this scenario, providing automatic synchronization between multiple
channels.

* “Acquire Data from Multiple Channels using an MCC Device”

* “Acquiring and Generating Data at the Same Time with Digilent Analog Discovery”

Exceptions: Some devices do not support setting the source of the start trigger or do not internally
route start trigger signals between subsystems. These include National Instruments myDAQ and

USB-6002. In such devices, only channels of the same subsystem support start trigger
synchronization by default.

Multiple Modules in the Same CompactDAQ Chassis

Modules in the same CompactDAQ chassis use the chassis scan clock and start trigger. The Data
Acquisition Toolbox DataAcquisition interface configures the chassis scan clock rate and issues the
start trigger signal. The chassis in turn provides synchronized signals to its modules.

The following examples illustrate this scenario, providing synchronization between multiple modules
in the same chassis without external connections or extra programming.

* “Acquire Data and Generate Signals at the Same Time”

* “Count Pulses on a Digital Signal Using NI Devices”

* “Measure Frequency Using NI Devices”

* “Measure Pulse Width Using NI Devices”

Exceptions: Some CompactDAQ modules have their own onboard clocks, for example, DSA modules.
Multiple Modules in the Same PXI Chassis

Modules in a PXI chassis share a common scan clock, but a Data Acquisition Toolbox DataAcquisition
does not synchronize the start trigger for multiple modules in the chassis by default. The start
triggers of multiple DSA modules can be synchronized using the AutoSyncDSA property, while other
PXI modules require an external trigger connection for start trigger synchronization.

The following topics illustrate these scenarios, showing how to synchronize start triggers on multiple
modules.

* “Synchronize DSA Devices” on page 13-13
* “Synchronize DSA PXI Devices Using AutoSyncDSA” on page 13-8
* “Acquire Synchronized Data Using PXI Devices” on page 13-9

Multiple Devices Without Chassis or in Different Chassis

This scenario represents multiple devices or modules in their most independent configuration. The
configuration could be multiple USB devices, for example, or modules in separate chassis. Neither
the start triggers nor the scan clocks of these devices are synchronized by default.

The following topics illustrates these scenarios, showing how to synchronize start triggers and scan
clocks on multiple devices without chassis or in different chassis, by way of an external connection.

* “Acquire Synchronized Data Using USB Devices” on page 13-7
* “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-12

13-5

13 Synchronization

* “Synchronize Counter Outputs from Multiple Devices” on page 13-8
* “Acquire Data from Two Devices at Different Rates”

See Also

More About

. “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7
. “Synchronize DSA Devices” on page 13-13

13-6

Multiple-Device Synchronization Using USB or PXI Devices

Multiple-Device Synchronization Using USB or PXI Devices

You can synchronize multiple devices in a DataAcquisition using a shared scan clock and shared start
trigger. You can synchronize devices using either PFI or RTSI lines.

Requirement You must register your RTSI cable using the National Instruments Measurement &
Automation Explorer.

Acquire Synchronized Data Using USB Devices

This example shows how to acquire synchronized voltage data from multiple devices using a shared
start trigger and a shared scan clock. Analog input channels on all three devices are connected to the
same function generator.

Create a DataAcquisition and add one voltage input channel from each device:

NI USB-6211 with device ID Dev1l
NI USB 6218 with device ID Dev?2

NI USB 6255 with device ID Dev3
d = dagq("ni");

addinput(d, "Devl",0,"Voltage")
addinput(d, "Dev2",0,"Voltage")
addinput(d, "Dev3",0,"Voltage")

Choose terminal PFI4 on Devl as the start trigger source. Connect the trigger source to the
destination terminals PFIO on Dev2 and PFIO on Dev3.

addtrigger(d,"Digital","StartTrigger", "Devl/PFI4","Dev2/PFI0")
addtrigger(d,"Digital","StartTrigger", "Devl/PFI4","Dev3/PFI0")

Choose terminal PFI5 on Dev1l as the scan clock source. Connect it to destination terminals PFI1 on
Dev2, and PFI1 on Dev3.

addclock(d, "ScanClock", "Devl/PFI5", "Dev2/PFI1")
addclock(d, "ScanClock", "Devl/PFI5", "Dev3/PFI1")

Acquire data and assign it to dataln.
dataIn = read(d,350,"OutputFormat","Matrix");
Plot the data.

plot(dataln)

13-7

13 Synchronization

13-8

-
B Figure 1 =R X
File Edit View Inset Tools Desktop Window Help u

Odde | FMAKTDELL- |2 0EH D

1 1 1 1 1
50 100 1580 200 250 300

S o

All channels are connected to the same function generator, so the plot displays overlapping signals,
indicating synchronization.

Synchronize Counter Outputs from Multiple Devices

This example shows how to synchronize the start trigger of counter output operations from two
channels on different devices.

d = daq("ni");

addoutput(d, "Devl","ctr0","PulseGeneration")

addoutput(d, "Dev2","ctr0","PulseGeneration")

addtrigger(d, "Digital","StartTrigger", "Devl/PFIO","Dev2/PFIO")
start(d)

This example uses two USB or PCI devices, but could be modified for channels across CompactDAQ
or PXI chassis. If you have counter output CompactDAQ modules in the same chassis, it is not
necessary to call addtrigger; but it is required for multiple modules in the same PXI chassis.

Synchronize DSA PXI Devices Using AutoSyncDSA

This example shows how to acquire synchronized data from two Dynamic Signal Analyzer (DSA) PXI
devices, NI PXI-4462 and NI PXI-4461, using the AutoSyncDSA property.

Create a DataAcquisition and add one voltage analog input channel from each of the two PXI devices

d = dag("ni");
addinput(d, "PXI1Slot2",0,"Voltage")
addinput(d, "PXI1Slot3",0,"Voltage")

Multiple-Device Synchronization Using USB or PXI Devices

Acquire data in the foreground without synchronizing the channels:

[data,time] = read(d,seconds(1l),"OutputFormat","Matrix");
plot(time,data)

The data returned is not synchronized.

Synchronize the two channels using the AutoSyncDSA property:
d.AutoSyncDSA = true;

Acquire data in the foreground and plot it:

[data,time] = read(d,seconds(1l),"OutputFormat","Matrix");
plot(time,data)

The data is now synchronized.

Acquire Synchronized Data Using PXI Devices

This example shows how to acquire voltage data from two PXI devices on the same chassis, using a
shared start trigger to synchronize operations within your DataAcquisition. PXI devices have a shared
reference clock that automatically synchronizes scan clocking. You need to add only start trigger
connections to synchronize operations in your DataAcquisition with PXI devices. Analog input
channels on all devices are connected to the same function generator.

Create a DataAcquisition and add one voltage input channel from each NI-PXI 4461 device with IDs
PXI1Slot2 and PXI1Slot3.

d = dag("ni");

addinput(d, "PXI1Slot2",0,"Voltage")
addinput(d, "PXI1Slot3",0,"Voltage")

Add a start trigger connection to terminal PXI Trig0 on PXI1Slot2 and connect it to terminal
PXI _Trig0 on PXI1Slot3. PXI cards are connected through the chassis backplane, so you do not
have to wire them physically.

addtrigger(d,"Digital","StartTrigger","PXI1Slot2/PXI Trig0","PXI1Slot3/PXI Trig0")
Acquire data and assign it to dataln.

dataln = read(d,seconds(1l),"OutputFormat","Matrix");

Plot the data.

plot(dataln)

13-9

13 Synchronization

u Figure 1 = | = &

File Edit View Insert Tools Desktop Window Help N

Ddde | | RRODEAL- S| 06 a0

50 T T T T T T T

40

30

20

10

1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 G600 70O 800 900 1000

o

All channels are connected to the same function generator and have a shared reference clock. The
signals overlap, indicating synchronization.

See Also

More About

. “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-12
. “Generate Pulse Data on a Counter Channel” on page 8-6

13-10

Synchronize with PFl on CompactDAQ Chassis Without Terminals

Synchronize with PFl on CompactDAQ Chassis Without
Terminals

This example shows how to use the external trigger and external clock functionality on a
CompactDAQ 9174 chassis without PFI terminals, by using the PFI terminals on digital I/O
CompactDAQ modules 9402 with ID cDAQ2Mod3 and 9201 with ID cDAQ2Mod4.

Some CompactDAQ chassis (e.g., NI 9174 and 9172) do not support built-in triggers, because they do
not have external BNC PFI connectors on the chassis itself. However, the PFI pins for these chassis
can be accessed through a digital module such as the NI 9402.

Add a start trigger from an external source.

d = dag("ni");

addinput(d, "cDAQ2Mod4","ai0","Voltage")
addtrigger(d,"Digital","StartTrigger", "External","cDAQ2Mod3/PFIO")
[data,timestamps] = read(d,seconds(1l),"OutputFormat","Matrix");
plot(timestamps,data)

Use an external scan clock from a function generator providing a 100 kHz clock to terminal PFI1 on
NI 9402.

d = daq("ni");

addinput(d, "cDAQ2Mod3","Port0/Line2","Digital")

addclock(d, "ScanClock", "External", "cDAQ2Mod3/PFI1)

d.Rate = 100E+3;

[data,timestamps] = read(d,seconds(1l),"OutputFormat","Matrix");
plot(timestamps,data);

See Also

13-11

13 Synchronization

Multiple-Chassis Synchronization with CompactDAQ Devices

13-12

This example shows how to acquire voltage data from two devices, each on a separate CompactDAQ
chassis, using a shared trigger and clock to synchronize operations within your DataAcquisition.

You can synchronize multiple CompactDAQ chassis in a DataAcquisition using one chassis to provide
clocking and triggering for all chassis in the DataAcquisition. Clock and trigger sources are attached
to terminals on the chassis, itself. All modules on the chassis as well as other connected devices, are
synchronized using these signals.

Create a DataAcquisition and add channels. Add one voltage input channel each from the two NI
9201 devices with IDs cDAQ1Mod1 and cDAQ2Mod1.

d = daq("ni");
addinput(d, "cDAQ1Mod1l",0,"Voltage")
addinput(d, "cDAQ2Mod1",0,"Voltage")

Choose terminal PFIO on cDAQ1 as your trigger source, and connect it to destination terminal PFIO
on cDAQ2. Make sure the wiring on the hardware runs between these two terminals. Note that you
are using the chassis and terminal pair here, not device and terminal pair.

addtrigger(d,"Digital","StartTrigger","cDAQ1l/PFI0O","cDAQ2/PFI0O")

Choose terminal PFI1 on cDAQ1 as your clock source, and connect it to destination terminal PFI1 on
cDAQ2. Make sure the wiring on the hardware runs between these terminals.

addclock(d, "ScanClock", "cDAQ1l/PFI1","cDAQ2/PFI1")

Acquire data and assign it to dataln.

dataln = read(d,seconds(1l),"OutputFormat","Matrix");

See Also

More About

. “Synchronize Counter Outputs from Multiple Devices” on page 13-8

Synchronize DSA Devices

Synchronize DSA Devices

The Digital Signal Analyzer (DSA) product family is designed to make highly accurate audio
frequency measurements. You can synchronize other PCI and PXI product families using “Trigger
Connections” on page 12-2 and “Clock Connections” on page 12-5. To synchronize PXI and PCI family
of DSA devices you need to use a sample clock with time-based synchronization or a reference clock
time based synchronization. The DataAcquisition AutoSyncDSA property allows you to automatically
enable both homogeneous and heterogeneous synchronization between PCI and PXI device families.
The AutoSyncDSA property automatically configures all the necessary clocks, triggers, and sync
pulses needed to synchronize DSA devices in your DataAcquisition.

PXI DSA Devices

PXI devices are synchronized using the PXI chassis backplane, which includes timing and triggering
buses. You can automatically synchronize these device series both homogeneously (within the same
series) and heterogeneously (across separate series) in the same DataAcquisition, including the
following:

* PXl/e 446x series

* PXl/e 449x series

» PXI 447x series

Hardware Restrictions
Before you synchronize, ensure that your device combinations adhere to these hardware restrictions:

PXl/e 446x and 449x Series

Chassis restriction

You can synchronize these series using either a PXI or a PXIe chassis. Make sure all your modules
are on the same chassis.

Slot placement restriction
You can use any slot on the chassis that supports your module.

PXI 447x Series

Chassis restriction

You can synchronize this series both homogeneously and heterogeneously only on a PXI chassis.
You can use them on a PXIe chassis to acquire unsynchronized data.

Slot placement restriction

On the PXI chassis, only the system timing slot can drive the trigger bus. Refer to your device
manual to find the system timing slot. This image shows the system timing slot on a PXIe 1062Q
chassis.

13-13

13 Synchronization

13-14

F INSTRUMENTS

System Timing Slot

Homogeneous synchronization: You can synchronize PXI 447x devices homogeneously if one
device is plugged into the system timing slot of a PXI chassis.

Heterogeneous synchronization:

* You can synchronize a PXI 447x device with a PXI 446x device when the 446x is plugged
into the system timing slot of a PXI chassis.

* You cannot synchronize PXI 447x devices with PXI 449x devices.

* You cannot use hybrid-slot compatible 446x devices.

DSA Device Compatibility Table

446x Series 447x Series 449x Series
446x% v o PXI chassis only v
Series + Standard 446x device, not
hybrid-slot compatible
* 446% device in system timing
slot
447x * PXI chassis only o PXI chassis only
Series + Standard 446x device, not + One device in system timing slot
hybrid-slot compatible
* 446x device in system timing
slot
449x v v
Series

Synchronize DSA Devices

PCI DSA Devices

PCI devices are synchronized use the RTSI cable. You can automatically synchronize these device
series both homogeneously (within the same series) and heterogeneously (across separate series) in
the same DataAcquisition when they are connected with a RTSI cable. Support includes the following:
* PCI 446x series

* PCI 447x series

Note If you are synchronizing PCI devices make sure you register the RTSI cables in Measurement
and Automation Explorer. For more information, see the NI knowledge base article Real-Time System
Integration (RTSI) and Configuration Explained.

Synchronize DSA PCI Devices

This example shows how to acquire synchronized data from two DSA PCI devices, NI PCI-4461 and
NI PCI-4462.

Connect the two devices with a RTSI cable.

Register your RTSI cable in Measurement and Automation Explorer.

Create a DataAcquisition and add one voltage analog input channel from each of the two PCI devices
d = daq("ni");

addinput(d, "Devl",0,"Voltage")

addinput(d, "Dev2",0,"Voltage")

Synchronize the two channels using the AutoSyncDSA property:

d.AutoSyncDSA = true;

Acquire data in the foreground and plot it:

[data,time] = read(d,seconds(1l),"OutputFormat","Matix");
plot(time,data)

Handle Filter Delays with DSA Devices

DSA devices have a built in digital filter. You must account for filter delays when synchronizing
between heterogeneous devices. Refer to your device manuals for filter delay information. For more
information, see the NI knowledge base article Why Is My Data Delayed When Using DSA Devices?
(Document ID: 2UI8PGX4).

Example 13.1. Account for Filter Delays

This example shows how to account for filter delays when you use the same sine wave to acquire from
two different channels from two different PXI devices. Perfectly synchronized channels will show zero
phase lag between the two acquired signals.

Create a DataAcquisition and add two analog input channels with 'Voltage' measurement type,
from National Instruments PXI-4462 and NI PXI-4472.

13-15

https://www.ni.com/product-documentation/54455/en/
https://www.ni.com/product-documentation/54455/en/
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P8toSAC

13 Synchronization

13-16

d = dag("ni");
chl addinput(d, "PXI1Slot2",0,"Voltage");
ch2 addinput(d, "PXI1Slot3",0,"Voltage");

Acquire unsynchronized data and plot it:

[data,time] = read(d,seconds(1l),"OutputFormat", "Matix");
plot(time,data)

Use AutoSyncDSA to automatically configure the triggers, clocks, and sync pulses of the channels to
synchronize the devices:

d.AutoSyncDSA = true;
Acquire synchronized data:

[data,time] = read(d,seconds(1l),"OutputFormat","Matix");
plot(time,data)

The data sheets for the NI PXI 4462 and PXI-4472 indicate a phase lag for each to be 63 and 38
samples, respectively, when the EnhancedAliasRejectionEnable property is disabled. Check to
make sure that this property is set to false or 0 on both channels:

chl.EnhancedAliasRejectionEnable
ans =

0
ch2.EnhancedAliasRejectionEnable
ans =

0

Visually verify in the plotted data that the phase difference is 25 samples apart.

See Also

More About
. “Synchronize DSA PXI Devices Using AutoSyncDSA” on page 13-8

Transition Your Code to New Interfaces

14 Transition Your Code to New Interfaces

Transition Your Code from Session to DataAcquisition Interface

This topic helps you transition your code from the session interface to the DataAcquisition interface.

Transition Common Workflow Commands

This table lists the session interface commands for common workflows and their corresponding
DataAcquisition interface commands.

To do this Session Command DataAcquisition Command
Find supported hardware available |daq.getDevices daglist

to your system

Reset toolbox to initial state dagreset daqgreset

Create interface object s = daq.createSession('ni') d = daq("ni");

Add analog input channel

addAnalogInputChannel(s, 'Devl’,

laddpigatyéed)"Devl"”, "ail", "Voltag

3ll)

Add analog output channel

addAnalogOutputChannel(s, 'Devl’

&ddautpen(d)"Devl"”, "aol", "Curre

nt")

Add digital input line

addDigitalChannel...
(s, 'Devl', 'Port0/Line0:1"

addinput(d, "Devl", "port0/linel"
'InputOnly"')

"Digital"

Add counter input channel

addCounterInputChannel. ..

(s,'Devl', 'ctr0', 'EdgeCou

addinput(d, "Devl","ctro", "EdgeC
nt')

punt");

Queue data for output

queueOutputData(s,outputSignal)

preload(d,outputSignal);

(Necessary only for background
operation.)

Start operation

startForeground(s);

startBackground(s);

For foreground operations that
block MATLAB when running:

write(d,signalData)
read(d, 8000)
readwrite(d,8000)

For background operations that run
without blocking MATLAB:

preload(d,outputSignal);
start(d)

Set data scan rate

s.rate = 48000

d.Rate = 48000;

Specify external trigger

addTriggerConnection. ..
(s, 'External', 'Dev3/PFIO',"

addtrigger(d,"Digital","StartTr
btartTrigger');

i_ggel"" , "Ex

Specify input signal range

ch = addAnalogInputChannel...
(s,'Devl',1, 'Voltag
ch.Range = [-5 5];

ch =
ech ;,Range =

addinput(d’ IIDevlll’ Ilai4II' IIV
[-5 5];

bltage");

14-2

Transition Your Code from Session to DataAcquisition Interface

Acquire Analog Data
Session Interface

Using the session interface, you create a vendor session and add channels to the session. You can use
any device or chassis from the same vendor available to your system and can add a combination of
analog, digital, and counter input and output channels. All the channels operate together when you
start the session.

1 Find hardware available to your system.

d = daq.getDevices
2 Create a session for National Instruments devices.

s = daq.createSession('ni');
3 Set the session scan rate to 8000.

s.Rate = 8000

4 Add an analog input channel for the device with ID Dev1 for voltage measurement, and then start
the acquisition.

addAnalogInputChannel(s, 'Devl',1, 'Voltage');
startForeground(s);

DataAcquisition Interface

1 Find hardware available to your system.

devs = daqlist
2 Create a DataAcquisition for National Instruments devices.

d = daq("ni");
3 Set the DataAcquisition scan rate to 8000.

d.Rate = 8000

4 Add an analog input channel for the device with ID Dev1 for voltage measurement, and then
start the acquisition.

addinput(d, "Devl","ail","Voltage");
data = read(d,4000);

Scan results are returned to the timetable data.

Use Triggers

Acquire analog data using hardware triggers.

Session Interface

You can specify an external event to trigger data acquisition using the session interface.

1 Create a session and add two analog input channels.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s, 'Devl',0:1, 'Voltage');

14-3

14 Transition Your Code to New Interfaces

14-4

Configure the terminal and range of the channels in the session.

ch(1l).TerminalConfig = 'SingleEnded’;
ch(l).Range = [-10.0 10.0];
ch(2).TerminalConfig = 'SingleEnded’;
ch(2).Range = [-10.0 10.0];

Create an external trigger connection and set the trigger to run one time.
addTriggerConnection(s, 'External', 'Devl/PFIO"', 'StartTrigger');

s.Connections(1).TriggerCondition = 'RisingEdge’;
s.TriggersPerRun = 1;

Set the rate and the duration of the acquisition.
s.Rate = 50000;

s.DurationInSeconds = 0.01;

Acquire data in the foreground and plot the data.

[data,timestamps] = startForeground(s);
plot(timestamps,data)

DataAcquisition Interface

1

Create a DataAcquisition and add two analog input channels.

d = daqg("ni");

ch = addinput(d, "Devl",0:1,"Voltage");

Configure the terminal configuration and range of the channels in the DataAcquisition.
) .TerminalConfig = "SingleEnded";

) .Range = [-10.0 10.0];
)

1
1
2).TerminalConfig = "SingleEnded";
ch(2).Range = [-10.0 10.0];

Create an external trigger connection and set the trigger to run one time.

ch(
ch(
ch(

addtrigger(d, "Digital","StartTrigger","Devl/PFIO","External");
d.DigitalTriggers(1l).Condition = "RisingEdge";
d.NumDigitalTriggersPerRun = 1;

Set the scan rate of the acquisition.

d.Rate = 50000;
Acquire data in the foreground for 0.01 seconds and plot the data from all channels.

data = read(d,seconds(0.01));
plot(data.Time, data.Variables)

Initiate an Operation When Number of Scans Exceeds Specified Value

You can specify your acquisition to watch for a specified number of scans to occur and then initiate
some operation.

Session Interface

The session interface uses listeners and events to trigger certain actions. The
NotifyWhenDataAvailableExceeds property can fire a DataAvailable event. A listener defines
the operation to execute at that time.

Transition Your Code from Session to DataAcquisition Interface

1 Create an acquisition session, add an analog input channel.
s = daq.createSession('ni');
addAnalogInputChannel(s, 'Devl', 'ai@', 'Voltage');

2 Set the scan rate to 800,000 scans per second, which automatically sets the DataAvailable
notification to automatically fire 10 times per second.

s.Rate = 800000;
s.NotifyWhenDataAvailableExceeds

ans =
80000
3 Increase NotifyWhenDataAvailableExceeds to 160,000.

s.NotifyWhenDataAvailableExceeds = 160000;
4 Add a listener to determine the function to call when the event occurs.

L = addlistener(s, 'DataAvailable’,
@(src,event)readAndLogData(src));

DataAcquisition Interface

The DataAcquisition interface uses callback functions that execute at occurrences determined by
certain properties. The ScansAvailableFcnCount property determines when to initiate the
callback function defined by ScansAvailableFcn.

1 Create a DataAcquisition interface and add an analog input channel.
d = dag("ni");
ch = addinput(d, "Devl",1,"Voltage");

2 Set the scan rate to 800,000 scans per second, which automatically adjusts the
ScansAvailableFcnCount property.

d.Rate = 800000;
d.ScansAvailableFcnCount
80000
3 Increase ScansAvailableFcnCount to 160,000.

d.ScansAvailableFcnCount = 160000;
4 Identify a callback function for when the count occurs.

d.ScansAvailableFcn = @readAndLogData;

Analog Output Generator Code

To compare session interface code and DataAcquisition interface code you can use the code
generated by the Analog Output Generator in MATLAB releases R2019b and R2020a. In both these
examples, the generator created a 10 Hz test signal sine wave for 1 second on a single channel of a
National Instruments USB-6211.

%% Auto-generated by Data Acquisition Toolbox Analog Output Generator in MATLAB R2020a.
%% Create DataAcquisition Object
% Create a DataAcquisition object for the specified vendor.

d = daq("ni");
%% Add Channels

14-5

14 Transition Your Code to New Interfaces

% Add channels and set channel properties, if any.

addoutput(d, "Devl","ao0","Voltage");
%% Set DataAcquisition Rate
% Set scan rate.

d.Rate = 250000;

%% Define Test Signal

% Create a test sine wave signal of specified peak-to-peak amplitude for each
% channel.

amplitudePeakToPeak chl = 20;

sineFrequency = 10; % 10 Hz
totalDuration = 1; % 1 seconds
outputSignal =

[1;
outputSignal(:,1) = createSine(amplitudePeakToPeak chl/2, ...
sineFrequency, d.Rate, "bipolar", totalDuration);
outputSignal(end+l,:) = 0;
%% Generate Signal
% Write the signal data.

write(d,outputSignal);
%% Clean Up
% Clear all DataAcquisition and channel objects.

clear d outputSignal
%% Create Test Signal
% Helper function for creating test sine wave signal.

function sine = createSine(A, f, sampleRate, type, duration)

numSamplesPerCycle = floor(sampleRate/f);
T = 1/f;

timestep = T/numSamplesPerCycle;

t = (0 : timestep : T-timestep)';

if type == "bipolar"

y = A*sin(2*pi*f*t);
elseif type == "unipolar"

y = A*sin(2*pi*f*t) + A;
end

numCycles = round(f*duration);
sine = repmat(y,numCycles,1);
end

Auto-generated by Data Acquisition Toolbox Analog Output Generator in MATLAB R2019b
Create Data Acquisition Session
Create a session for the specified vendor.

o
J
o
6

o of of

= dag.createSession('ni');
% Set Session Properties
Set properties that are not using default values.

o o »

%)

.Rate = 250000;
%% Add Channels to Session

% Add channels and set channel properties.
addAnalogOutputChannel(s, 'Devl’', 'ao0"', 'Voltage');

%% Define Test Signal

% Create a test sine wave signal of specified peak-to-peak amplitude for each
% channel.

amplitudePeakToPeak chl = 20;

sineFrequency
totalDuration

0; % 10 Hz

1
1; % 1 seconds

outputSignal(:,1) = createSine(amplitudePeakToPeak chl/2, ...
sineFrequency, s.Rate, 'bipolar', totalDuration);

outputSignal(end+l,:) = 0;

%% Queue Signal Data

% Make signal data available to session for generation.

queueOutputData(s,outputSignal);
%% Generate Signal
% Start foreground generation

startForeground(s);

14-6

Transition Your Code from Session to DataAcquisition Interface

%% Clean Up
% Clear the session and channels.

clear s outputSignal
%% Create Test Signal
% Helper function for creating test sine wave signal.

function sine = createSine(amplitude, frequency, sampleRate, type, duration)

sampleRatePerCycle = floor(sampleRate/frequency);
period = 1/frequency;

s = period/sampleRatePerCycle;

t=1(0: s : period-s)';

if strcmpi(type, 'bipolar')

y = amplitude*sin(2*pi*frequency*t);
elseif strcmpi(type, 'unipolar')

y = amplitude*sin(2*pi*frequency*t) + amplitude;
end

numCycles = round(frequency*duration);

sine = repmat(y, numCycles, 1);
end

Previous Interface Help

The DataAcquisition interface is supported in R2020a and later. If you are using an earlier release,
use the session interface instead. For more information and examples of the session interface, see

Data Acquisition Toolbox Documentation (R2019b).

14-7

https://www.mathworks.com/help/releases/R2019b/daq/index.html

Functions

15 Functions

15-2

addbidirectional

Package: daq.interfaces

Add digital bidirectional channel to device interface

Syntax

addbidirectional(d,devicelID,channellID,"Digital")
ch = addbidirectional()
[ch,idx] = addbidirectional()

Description

addbidirectional(d,deviceID,channellID,"Digital") adds the digital bidirectional channel
channellID of device devicelD to the specified DataAcquisition interface, d.

The channel information is available from the DataAcquisition Channels property.
ch = addbidirectional() adds the channel and returns a channel object.

[ch,idx] = addbidirectional() adds the channel and also returns the channel index from
the DataAcquisition interface. The channel index reflects only the sequence in which channels are
added to the DataAcquisition; not to be confused with the device channel ID.

Examples

Add Bidirectional Channels to DataAcquisition

Add bidirectional digital channels to a DataAcquisition, and use indices to view their settings.

d = daq("ni");
chl = addbidirectional(d, "Devl","port0/line@","Digital");
[ch2,idx2] = addbidirectional(d, "Devl","port0/linel","Digital");

d.Channels
Index Type Device Channel Measurement Type Range Name
1 "dio" "Devl" "port0/lined" "Bidirectional (Input)" “n/a" "Devl port0/line0d"
2 "dio" "Devl" "port0/linel" "Bidirectional (Input)" “n/a" "Devl port0/linel"

Access one of the channel settings using its index.
d.Channels(idx2).ID

"port0@/linel’

Input Arguments

d — DataAcquisition interface
DataAcquisition object

addbidirectional

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

deviceID — Device ID
character vector or string

Device ID specified as a character vector or string, as defined by the device vendor. Obtain the device
ID by calling daqlist.

Example: "Dev1l"

Data Types: char | string

channellD — Channel ID
numeric value, character vector, or string

Channel ID specified as a numeric value, character vector, or string; often indicating the physical
location of the channel on the device. Supported values are specific to the vendor and device. You can
add multiple channels by specifying the channel ID as a numeric vector, or an array of character
vectors or strings. The index returned for this channel in the DataAcquisition display indicates the
position of this channel. This channel ID is not the same as channel index in the DataAcquisition: if
you add a channel with ID 2 as the first channel in a DataAcquisition, the DataAcquisition channel
index is 1.

Example: "portl/linel"

Data Types: char | string | numeric

Output Arguments

ch — Channel
Channel object

Channel, returned as a DigitalBidirectionalChannel object with the following properties:
Device

Direction

ID

MeasurementType

Name

idx — Channel index
numeric

Channel index returned as a numeric value. With this index, you can access the array of the
DataAcquisition Channels property.

See Also

Functions
addinput | addoutput | daq | daqlist | removechannel

Introduced in R2020a

15-3

15 Functions

15-4

addclock

Package: daq.interfaces

Add clock connection to device interface

Syntax

addclock(d, "ScanClock",clkSrc, clkDest)
clk = addclock()

[clk,idx] = addclock()

Description

addclock(d, "ScanClock",clkSrc, clkDest) adds a clock connection to the DataAcquisition
interface for sharing, importing, or exporting a clock configuration. The created clock connection is
appended to the Clocks property of the DataAcquisition object.

clk = addclock() adds the clock and returns the clock object.
[clk,idx] = addclock() adds the clock and returns the clock object and the clock index

from the DataAcquisition interface.

Examples

Add Clocks to DataAcquisition Interface
Add clocks to a DataAcquisition interface in various configurations.

Add a clock shared between two devices.

d = daq("ni");

addinput(d, "Devl","ai0@","Voltage")

addinput(d, "Dev2","ai0","Voltage")

addclock(d, "ScanClock", "Devl/PFIO", "Dev2/PFIO")

Add a clock imported from an external source.

d = daq("ni");

addinput(d, "Devl","ai0@","Voltage")

addclock(d, "ScanClock","External", "Devl/PFIO")

Add a clock exported to external destination.

addclock

d = dag("ni")
addinput(d, "Devl","ai0@","Voltage")
addclock(d, "ScanClock", "Devl/PFIO","External")

Input Arguments

d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.

Example: d = daq()

clkSrc — Clock signal source
string | char

Clock signal source, specified as a string or character vector indicating a device terminal, or
"external" when importing a clock from an external source.

Example: "external"

Data Types: char | string

clkDest — Clock signal destination
string | char

Clock signal destination, specified as a string or character vector indicating a device terminal, or
"external" when exporting a clock to an external destination.

Example: "external"

Data Types: char | string

Output Arguments

clk — Clock
Clock object

Clock connection, returned as a Clock object with properties Source, Destination, and Type.

idx — Clock index
numeric

Clock index, returned as a numeric value. With this index, you can access the array of the
DataAcquisition Clocks property.

See Also

Functions
daq | removeclock

Introduced in R2020a

15-5

15 Functions

15-6

addinput
Package: daq.interfaces

Add input channel to device interface

Syntax
addinput(d,devicelID, channellID,measurementType)

ch = addinput(_)
[ch,idx] = addinput()

Description

addinput(d,devicelID,channellID,measurementType) adds the input channel channelID from
device devicelD to the specified DataAcquisition interface, d, configured for the specified
measurement type.

The channel information is available from the DataAcquisition Channels property.

ch = addinput() adds the channel and returns a channel object.

[ch,idx] = addinput() adds the channel and also returns the channel index from the

DataAcquisition interface. The channel index indicates only the sequence in which channels are
added to the DataAcquisition; not to be confused with the device channel ID.

Examples

Add Input Channels to DataAcquisition

Add multiple input channels to a DataAcquisition, and use indices to view their settings.

d = daq('directsound');
chl = addinput(d, "Audio0","1","Audio");
[ch2,idx2] = addinput(d, "Audiol","1","Audio");

d.Channels
Index Type Device Channel Measurement Type Range Name
1 "audi" "Audio0Q" " "Audio" "-1.0 to +1.0" "Audio@ 1"
2 "audi" "Audiol" " "Audio" "-1.0 to +1.0" "Audiol 1"

Access one of the channel settings using its index.
d.Channels(idx2) .Range
Range with properties:

Units:

addinput

Max: 1
Min: -1

Input Arguments

d — DataAcquisition interface

DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

deviceID — Device ID
character vector or string

Device ID specified as a character vector or string, as defined by the device vendor. Obtain the device
ID by calling daqlist.

Example: "Dev1"

Data Types: char | string

channelID — Channel ID
numeric value, character vector, or string

Channel ID specified as a numeric value, character vector, or string; often indicating the physical
location of the channel on the device. Supported values are specific to the vendor and device. You can
add multiple channels by specifying the channel ID as a numeric vector, or an array of character
vectors or strings. The index returned for this channel in the DataAcquisition display indicates the
position of this channel. This channel ID is not the same as channel index in the DataAcquisition: if
you add a channel with ID 2 as the first channel in a DataAcquisition, the DataAcquisition channel
index is 1.

Example: "ai2"

Data Types: char | string | numeric

measurementType — Channel measurement type
character vector | string

Channel measurement type, specified as a character vector or string. measurementType represents
a vendor-defined measurement type. Valid measurement types include the following:

Measurement Type Subsystem

'Voltage' Analog Input
‘Current’ Analog Input
'Thermocouple'’ Analog Input
"Accelerometer’ Analog Input
'RTD' Analog Input
'Bridge' Analog Input
'"Microphone' Analog Input
'"IEPE' Analog Input

15-7

15 Functions

15-8

Measurement Type Subsystem
'Digital’ Digital I/O
"EdgeCount’ Counter Input
'Frequency’ Counter Input
'PulseWidth' Counter Input
'"Position' Counter Input
"Audio’ Audio Input

Not all devices support all types of measurement.

Example: "Voltage"
Data Types: char | string
Output Arguments

ch — Channel
channel object

Channel, returned as a channel object with properties depending on the type of channel.

idx — Channel index
numeric

Channel index, returned as a numeric value. With this index, you can access the array of the

DataAcquisition Channels property.

See Also

Functions

addbidirectional | addoutput | daq | daglist | removechannel

Introduced in R2020a

addoutput

addoutput

Package: daq.interfaces

Add output channel to device interface

Syntax

addoutput(d,devicelD, channellID,measurementType)
ch = addoutput()
[ch,idx] = addoutput()

Description

addoutput(d,devicelD, channellD,measurementType) adds the output channel channelID of
device devicelD to the specified DataAcquisition interface, d, configured for the specified
measurement type.

The channel information is available from the DataAcquisition Channels property.
ch = addoutput() adds the channel and returns a channel object.

[ch,idx] = addoutput() adds the channel and also returns the channel index from the
DataAcquisition interface. The channel index reflects only the sequence in which channels are added
to the DataAcquisition; not to be confused with the device channel ID.

Examples

Add Output Channels to DataAcquisition

Add multiple channels to a DataAcquisition, and use indices to view their settings.

d = daqg('directsound');
chl = addoutput(d, "Audio3","1","Audio");
[ch2,idx2] = addoutput(d,"Audio6","1","Audio");

d.Channels
Index Type Device Channel Measurement Type Range Name
1 "audo" "Audio3" " "Audio" "-1.0 to +1.0" "Audio3 1"
2 "audo" "Audio6" " "Audio" "-1.0 to +1.0" "Audiob 1"

Access one of the channel settings using its index.
d.Channels(idx2).Type
"AudioOutputChannel’

Input Arguments

d — DataAcquisition interface
DataAcquisition object

15-9

15 Functions

15-10

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.

Example: d = daq()

deviceID — Device ID
character vector or string

Device ID specified as a character vector or string, as defined by the device vendor. Obtain the device
ID by calling daqlist.

Example: "Dev1"

Data Types: char | string

channelID — Channel ID
numeric value, character vector, or string

Channel ID specified as a numeric value, character vector, or string; often indicating the physical
location of the channel on the device. Supported values are specific to the vendor and device. You can
add multiple channels by specifying the channel ID as a numeric vector, or an array of character
vectors or strings. The index returned for this channel in the DataAcquisition display indicates the
position of this channel. This channel ID is not the same as channel index in the DataAcquisition: if
you add a channel with ID 2 as the first channel in a DataAcquisition, the DataAcquisition channel
index is 1.

Example: "a02"

Data Types: char | string | numeric

measurementType — Channel measurement type
string | character vector

Channel measurement type, specified as a string or character vector. measurementType represents
a vendor-defined measurement type. Valid measurement types include the following:

Measurement Type Subsystem
'Voltage' Analog Output
"Current' Analog Output
'Digital’ Digital I/O
'PulseGeneration' Counter Output
"Audio’ Audio Output
'Sine'’ Function Generator
'Square’ Function Generator
'Triangle’ Function Generator
‘RampUp"* Function Generator
'RampDown'* Function Generator
'DC! Function Generator
"Arbitrary’ Function Generator

Not all devices support all types of measurement.

Example: "Voltage"

addoutput

Data Types: char | string

Output Arguments

ch — Channel
channel object

Channel, returned as a channel object with properties depending on the type of channel.

idx — Channel index
numeric

Channel index, returned as a numeric value. With this index, you can access the array of the
DataAcquisition Channels property.

See Also

Functions
addbidirectional | addinput | daq | daqlist | removechannel

Introduced in R2020a

15-11

15 Functions

15-12

addtrigger

Package: daq.interfaces

Add trigger connection to device interface

Syntax

addtrigger(d,"Digital","StartTrigger",trigSrc,trigDest)
trg = addtrigger()
[trg,idx] = addtrigger()

Description

addtrigger(d,"Digital","StartTrigger",trigSrc,trigDest) adds a trigger connection to
the DataAcquisition interface. The created connection is appended to the DigitalTriggers
property of the DataAcquisition object.

trg = addtrigger() adds the trigger and returns the trigger object.

[trg,idx] = addtrigger() adds the trigger and returns the trigger object and the trigger
index from the DataAcquisition interface.

Examples

Add Trigger to DataAcquisition Interface
Add triggers to a DataAcquisition interface in various configurations.

Add a trigger shared between two devices.

d = daq("ni");

addinput(d, "Devl","ai0@","Voltage")

addinput(d, "Dev2","ai0@","Voltage")
addtrigger(d,"Digital","StartTrigger", "Devl/PFIO", "Dev2/PFI0")

Add a trigger imported from an external source.

d = daq("ni");

addinput(d, "Devl","ai0@","Voltage")

addtrigger(d, "Digital","StartTrigger", "External", "Devl/PFIQ")

Add a trigger exported to external destination.

addtrigger

d = dag("ni")
addinput(d, "Devl","ai0@","Voltage")
addtrigger(d,"Digital","StartTrigger", "Devl/PFI0", "External")

Input Arguments

d — DataAcquisition interface

DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

trigSrc — Trigger signal source
string | char

Trigger signal source, specified as a string or character vector indicating a device terminal, or
"external" when importing a terminal from an external source.

Example: "external"

Data Types: char | string

trigDest — Trigger signal destination
string | char

Trigger signal destination, specified as a string or character vector indicating a device terminal, or
"external" when exporting a trigger to an external destination.
Example: "external"

Data Types: char | string

Output Arguments

trg — Trigger
Trigger object

Trigger connection, returned as a trigger object, whose type and properties depend on the kind of
trigger. For example:

DigitalTrigger with properties:
Source: 'External'
Destination: 'Dev4/PFI1'
Type: StartTrigger
Condition: 'RisingEdge’

idx — Trigger index
numeric

Trigger index, returned as a numeric value. With this index, you can access the array of the
DataAcquisition DigitalTriggers property.

15-13

15 Functions

15-14

See Also

Functions
daq | removetrigger

Introduced in R2020a

binaryVectorToDecimal

binaryVectorToDecimal

Convert binary vector value to decimal value

Syntax

decVal = binaryVectorToDecimal (binaryVector)
binaryVectorToDecimal (binaryVector,bitOrder)

Description
decVal = binaryVectorToDecimal(binaryVector) converts a binary vector to a decimal.

binaryVectorToDecimal(binaryVector,bitOrder) converts a binary vector with the specified
bit orientation to a decimal .

Examples

Convert a Binary Vector to a Decimal Value
decVal = binaryVectorToDecimal([1 1 0])

decVal =

6

Convert a Binary Vector Array to a Decimal Value

decVal binaryVectorToDecimal([1 0 0 0; 0 1 0 0])

decVal

8
4

Convert a Binary Vector with LSB First
decVal = binaryVectorToDecimal([1 6 6 0; 06 1 0 0], 'LSBFirst"')

decVal =

1
2

Convert a Binary Vector Array with LSB First

decVal = binaryVectorToDecimal([1l 1 0], 'LSBFirst")

15-15

15 Functions

15-16

decVal =

6

Input Arguments

binaryVector — Binary vector to convert to decimal
binary vectors

Binary vector to convert to a decimal, specified as a single binary vector or a row or column-based
array of binary vectors.

bitOrder — Bit order for binary vector representation
'"MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string. Accepted
values are:

* 'MSBFirst' — The first element of the binary vector is the most significant bit.
* 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

Output Arguments

decVal — Decimal value
double

Decimal value, returned as a double.

See Also

Functions
binaryVectorToHex | decimalToBinaryVector | hexToBinaryVector

Topics
“Generate Digital Output Using Decimal Data Across Multiple Lines” on page 9-14

Introduced in R2012b

binaryVectorToHex

binaryVectorToHex

Convert binary vector value to hexadecimal

Syntax

hexVal
hexVal

binaryVectorToHex(binaryVector)
binaryVectorToHex(binaryVector,bitOrder)

Description

hexVal = binaryVectorToHex(binaryVector) converts the input binary vector to a
hexadecimal.

hexVal = binaryVectorToHex(binaryVector,bitOrder) converts the input binary vector
using the specified bit orientation.

Examples

Convert a Binary Vector to a Hexadecimal

hexVal binaryVectorToHex([0 6 1 1 11 0 1])

hexVal

|3D|

Convert an Array of Binary Vectors to Hexadecimal

hexVal = binaryVectorToHex([1 1 0 0 0 100 ; 00001010])

hexVal

2x1 cell array

The output is appended with Os to make all hex values the same length character vectors.

Convert a Binary Vector with LSB First

hexVal

binaryVectorToHex([0 6 1 1 1 1 0 1], 'LSBFirst')

hexVal =

IBCI

15-17

15 Functions

15-18

Convert a Binary Vector Array with LSB First
hexVal = binaryVectorToHex([1 1000 100 ; 0600010 10], LSBFirst")

hexVal =

2x1 cell array

If necessary, the output is appended with Os to make all hex values the same length character vectors.

Note The binary vector array is converted to a cell array of hexadecimal numbers. If you input a
single binary vector, it is converted to a hexadecimal character vector.

Input Arguments

binaryVector — Binary vector to convert to hexadecimal
numeric vector of 1s and 0s

Binary vector to convert to hexadecimal, specified as a numeric vector with Os and 1s. The vector can
be a column or row vector.

bitOrder — Bit order for binary vector representation
'"MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string. Accepted
values are:

* 'MSBFirst' — The first element of the binary vector is the most significant bit.
* 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

Output Arguments

hexVal — Hexadecimal value
character vector

Hexadecimal value returned as a character vector. Multiple values are returned as a cell array of
character vectors.

See Also

Functions
binaryVectorToDecimal | decimalToBinaryVector | hexToBinaryVector

Topics
“Acquire Digital Data in Hexadecimal Values” on page 9-12

Introduced in R2012b

daq

daq

Package: daq.interfaces

Create DataAcquisition device interface for specific vendor

Syntax

d = daq(vendor)

Description

d = daq(vendor) creates a DataAcquisition interface object for configuring and operating data

acquisition devices from the specified vendor.

Examples

Create a DataAcquisition

Create a DataAcquisition object for interfacing with Windows sound devices.

d

dag("directsound")
d:
DataAcquisition using DirectSound hardware:

Running: 0

Rate: 44100
NumScansAvailable: 0
NumScansQueued: 0
NumScansOutputByHardware: 0
RateLimit: []

Show channels
Show properties and methods

Input Arguments

vendor — Device vendor
"ni" | "adi" | "mcc" | "directsound" | "digilent"

Device vendor specified as a string or character vector.
1 I

Example: "ni

Data Types: char | string

15-19

15 Functions

Output Arguments

d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, returned as a DataAcquisition object. This interface can accommodate
all supported devices from the specified vendor. Interfaces with different vendors require separate
DataAcquisition objects.

See Also

Functions
addbidirectional | addclock | addinput | addoutput | addtrigger | daglist |
dagvendorlist | removechannel | removeclock | removetrigger

Objects
DataAcquisition

Introduced in R2020a

15-20

daghelp

daghelp

Help for toolbox interface

Syntax
daghelp

daghelp(functionname)
helptext = daghelp('functionname"')

Description

daghelp displays a comprehensive listing of Data Acquisition Toolbox functions along with a brief
description of each. Links in the output provide access to more detailed information.

daghelp(functionname) returns help for the function specified as a character vector or string.

helptext = daghelp('functionname') assigns the help text output to the variable out.

Examples

Get Toolbox Help

Get overview help for Data Acquisition Toolbox.

daghelp

Get Function Help

Get help for a specified function.

daghelp("addinput")

Return Function Help Text to Variable

Get help for a specified function, assigning the help text to a variable.

helptext = daghelp("addinput");

Input Arguments

functionname — Function for which you want help
char vector or string

Function for which you want help, specified as a character vector or string.

Example: "addinput"

15-21

15 Functions

Data Types: char | string

Output Arguments

helptext — Help text
char vector

Help text, returned as a character vector.

Introduced before R2006a

15-22

daglist

daqlist

List data acquisition devices available to toolbox

Syntax

daglist

daglist(vendor)
dev = daqlist()

Description

daqlist displays a table of all available devices for all supported vendors. The information for each
device includes device IDs, descriptions, models, and device subsystems.

daqlist(vendor) lists all available devices for the specified vendor in table format.

dev = daglist(__) assigns the device table to dev. You can access individual table cells by
indexing position or column labels.

Examples

List Devices for All Vendors

List all available devices.

dev = daqlist

dev =
12x5 table
VendorID DevicelID Description Model
"ni" "Dev2" "National Instruments(TM) PCIe-6363" "PCIe-6363"
“ni" "PXI1Slot2" "National Instruments(TM) PXI-4461" "PXI-4461"
"adi" "SMul" "Analog Devices Inc. ADALM1000" "ADALM1000"
"directsound" "Audio0Q" "DirectSound Primary Sound Capture Driver" "Primary Sound Capture Driver"
"directsound" "Audiol" "DirectSound Headset Microphone (Plantronics BT600)" "Headset Microphone (Plantronics BT60(
"directsound" "Audio2" "DirectSound Primary Sound Driver" "Primary Sound Driver"
"directsound" "Audio3" "DirectSound Headset Earphone (Plantronics BT600)" "Headset Earphone (Plantronics BT600)
"directsound" "Audio4" "DirectSound LEN T2454pA (NVIDIA High Definition Audio):1" "LEN T2454pA (NVIDIA High Definition /
"directsound" "Audio5" "DirectSound LEN T2454pA (NVIDIA High Definition Audio):2" "LEN T2454pA (NVIDIA High Definition /
"directsound" "Audio6" "DirectSound Speakers (Lenovo USB Soundbar)" "Speakers (Lenovo USB Soundbar)'
"directsound" "Audio7" "DirectSound Speakers (Realtek High Definition Audio)" "Speakers (Realtek High Definition Auc
"mcc" "Board0Q" "Measurement Computing Corp. USB-1208FS-Plus" "USB-1208FS-Plus"

List Devices for Specific Vendor

List all available National Instruments devices.

dev = daqlist("ni")

dev =

15-23

15 Functions

12x5 table
VendorID DevicelID Description Model DevicelInfo
"ni" "Dev2" "National Instruments(TM) PCIe-6363" "PCIe-6363" [1x1 daq.DeviceInfo]
"ni" "PXI1Slot2" "National Instruments(TM) PXI-4461" "PXI-4461" [1x1 daq.DeviceInfo]

View details of the first device.

devinfo = dev.DeviceInfo(1l)

devinfo =

ni: National Instruments(TM) PCIe-6363 (Device ID: 'Dev2')
Analog input supports:
7 ranges supported
Rates from 0.1 to 2000000.0 scans/sec
32 channels ('ai®' - 'ai3l"')
'Voltage' measurement type

Analog output supports:
-5.0 to +5.0 Volts,-10 to +10 Volts ranges
Rates from 0.1 to 2857142.9 scans/sec
4 channels ('ao0','aol','ao2', 'ao3")
'Voltage' measurement type

Digital IO supports:

Rates from 0.1 to 10000000.0 scans/sec

48 channels ('port0/line@' - 'port2/line7')

'InputOnly', 'OutputOnly', 'Bidirectional' measurement types
Counter input supports:

Rates from 0.1 to 100000000.0 scans/sec

4 channels ('ctr0@','ctrl','ctr2','ctr3")

'EdgeCount', 'PulseWidth', 'Frequency', 'Position' measurement types
Counter output supports:

Rates from 0.1 to 100000000.0 scans/sec

4 channels ('ctr@','ctrl','ctr2','ctr3")
'PulseGeneration' measurement type

Input Arguments

vendor — Device vendor
"ni" | "adi" | "mcc" | "directsound" | "digilent"

Device vendor specified as a string or character vector.
Example: "ni"
Data Types: char | string

Output Arguments

dev — Table of devices
table

List of available devices, returned as a table.

See Also

Functions
daq | dagvendorlist

15-24

daglist

Introduced in R2020a

15-25

15 Functions

daqreset

Reset Data Acquisition Toolbox

Syntax

dagreset

Description

daqreset resets Data Acquisition Toolbox and deletes all data acquisition objects.

Examples

Reset the Toolbox

Create a DataAcquisition interface, then reset the toolbox.

d = daq("ni");
daqreset

d

d:

handle to deleted DataAcquisition

See Also

Functions

Introduced before R2006a

15-26

dagvendorlist

daqvendorlist

List vendors available to toolbox

Syntax

daqvendorlist
v = dagvendorlist

Description

dagvendorlist displays a list of supported vendors with information about adaptor versions, driver
versions, and operational status. Vendor support requires installation of the appropriate support

package. See “Data Acquisition Toolbox Supported Hardware”.

v = dagvendorlist assigns the table to v.

Examples

List Available Vendors

List vendors available to toolbox.

dagvendorlist
ans =
5x5 table
ID FullName AdaptorVersion DriverVersion

"ni" "National Instruments(TM)" 4.0 (R2019b) "unknown"
"adi" "Analog Devices Inc." 4.0 (R2019b) "1.0"
"directsound" "DirectSound" "4.0 (R2019b)" "n/a"
"digilent" "Digilent Inc." "4.0 (R2019b)" "3.7.20"
"mcc" "Uninitialized" 4.0 (R2019b) "unknown"

Output Arguments

v — Vendor information
table

Vendor information returned as a table.

See Also

Functions
dag | daqlist

Introduced in R2020a

Operational

false
true
true
true
false

15-27

15 Functions

15-28

DataAcquisition

Interface to data acquisition device

Description

The DataAcquisition object provides access to the devices of a specified vendor.

Creation

Use the daq function to create a DataAcquisition object.

Properties

AutoSyncDSA — Automatically Synchronize DSA devices
false (default) | true

Automatically Synchronize DSA devices, specified as a logical true or false. Use this property to
enable or disable automatic synchronization between DSA (PXI or PCI) devices in the same
DataAcquisition. By default automatic synchronization capability is disabled.

Example: true

Data Types: logical

Channels — Device channels
array of channel objects

This property is read-only.

Device channels, returned as an array of channel objects. Create channels with the functions
addinput, addoutput, and addbidirectional.

Example: addinput(d,..)

Clocks — Device clock connections
array of clock objects

This property is read-only.

Device clock connections, returned as an array of clock objects. Create clocks with the addclock
function.

Example: addclock(d,..)

DigitalTriggers — Device digital trigger connections
array of DigitalTrigger objects

This property is read-only.

Device digital trigger connections, returned as an array of DigitalTrigger objects. Use the
addtigger function to add digital triggers to the DataAcquisition.

DataAcquisition

Example: addtrigger(d,..)

DigitalTriggerTimeout — Time allowed for occurrence of digital trigger
10 (default) | numeric | duration

Time allowed for occurrence of digital trigger, specified as a numeric value in seconds or a duration.
Example: 30

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
duration

ErrorOccurredFcn — Callback function to call when error occurs
function handle

Callback function to call when error occurs, specified as a function handle.
Example: @mycleanup

Data Types: function handle

NumDigitalTriggerRemaining — Number of digital triggers remaining in run
1 (default) | numeric

This property is read-only.

Number of digital triggers remaining in run, returned as a double.
Example: 1
Data Types: double

NumDigitalTriggersPerRun — Number of digital triggers per DataAcquisition run
numeric

Number of digital triggers per DataAcquisition run, returned as a double.
Example: 2
Data Types: double

NumScansAvailable — Number of data scans acquired and available for reading
numeric

This property is read-only.

Number of data scans available for reading, returned as a double. These scans have been acquired by
the device input channels.

Example: 1000
Data Types: uint64

NumScansOutputByHardware — Number of scans generated as device output
numeric

This property is read-only.

Number of scans generated as device output, returned as a double.

15-29

15 Functions

Example: 1024
Data Types: uint64

NumScansQueued — Number of scans prepared for device output
numeric

This property is read-only.
Number of scans queued to the output channels

Example: 4000
Data Types: uint64

Rate — Data scan rate
numeric

Data scan rate, specified as a numeric value of samples per second.
Example: 44100
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

RateLimit — Lower and upper scan rate limits
array of doubles

This property is read-only.

Lower and upper scan rate limits, returned as a 1-by-2 vector of doubles indicating minimum and
maximum allowed scan rates in samples per second. The scan rate limits depend on the hardware
and its configurations.

Example: [8000 192000]
Data Types: double

Running — DataAcquisition running indication
true | false

This property is read-only.
DataAcquisition running indication, returned as true or false.

Example: true

Data Types: logical

ScansAvailableFcn — Callback function when scans are available
function handle

Callback function to execute when scans are available from the input channels, specified as a function
handle

Example: @read

Data Types: function handle

ScansAvailableFcnCount — Number of acquired scans to trigger ScansAvailableFcn
numeric

15-30

DataAcquisition

Number of acquired scans to trigger ScansAvailableFcn, specified as a numeric value. The
function handle specified in ScansAvailableFcn executes every time ScansAvailableFcnCount
scans are acquired from the input channels.

Example: 8000
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

ScansRequiredFcn — Callback function when output scan data is required
function handle

Callback function to execute when scan data is required for device output channels. specified as a
function handle.

Example: @write

Data Types: function handle

ScansRequiredFcnCount — Number of scans to trigger ScansRequiredFcn
"auto" (default) | numeric

Number of queued scans to trigger ScansRequiredFcn, specified as a numeric value or "auto".
The function handle specified in ScansRequiredFcn executes when NumScansQueued drops below
the value specified in this property. If this is set to "auto", the value resets to a default.

Example: 2000
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
char | string

UserData — Custom data
any data

Custom data, specified as any MATLAB data type and format.
Example: datetime('now")

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical | char|string | struct | table | cell | function handle | categorical | datetime
| duration | calendarDuration | fi

Vendor — Data acquisition hardware vendor information
vendor object

This property is read-only.

Data acquisition hardware vendor information, returned as a vendor object with the following
properties:

ID

FullName
AdaptorVersion
DriverVersion
IsOperational

This object is the same as the corresponding vendor object returned by the daqvendorlist
function.

15-31

15 Functions

15-32

WaitingForDigitalTrigger — Digital trigger waiting indication
false (default) | true

This property is read-only.

Digital trigger waiting indication, returned as a logical.

Example: true

Data Types: logical

Object Functions

addinput

read
readwrite

start

stop
removechannel
flush

write

preload
addoutput
addbidirectional
resetcounters
addclock
removeclock
addtrigger
removetrigger

Examples

Add input channel to device interface

Read data acquired by hardware

Simultaneously read and write device channel data
Start DataAcquisition background operation

Stop background operation

Remove channel from device interface

Flush DataAcquisition input and output buffers
Write output scans to hardware channels

Queue scan data for device output

Add output channel to device interface

Add digital bidirectional channel to device interface
Reset hardware scan count for all counter inputs
Add clock connection to device interface

Remove clock from device interface

Add trigger connection to device interface

Remove trigger from device interface

Create a DataAcquisition

Create and configure a DataAcquisition object for interfacing with National Instruments devices.

d = daq("ni")

d.Rate = 20000;

See Also

Functions

daqg | daghelp | daqlist | dagreset | dagvendorlist

Introduced in R2020a

decimalToBinaryVector

decimalToBinaryVector

Convert decimal value to binary vector

Syntax

binVal = decimalToBinaryVector(decimalNumber)

binVal = decimalToBinaryVector(decimalNumber,numberOfBits)

binVal = decimalToBinaryVector(decimalNumber,numberOfBits,bitOrder)
binVal = decimalToBinaryVector(decimalNumber,[],bitOrder)
Description

binvVal = decimalToBinaryVector(decimalNumber) converts a positive decimal number to a
binary vector, represented using the minimum number of bits.

binval = decimalToBinaryVector(decimalNumber,numberOfBits) converts a decimal
number to a binary vector with the specified number of bits.

binVal = decimalToBinaryVector(decimalNumber, number0fBits,bitOrder) converts a
decimal number to a binary vector with the specified number of bits in the specified bit ordering.

binVal = decimalToBinaryVector(decimalNumber,[],bitOrder) converts a decimal
number to a binary vector with default number of bits in the specified bit ordering.

Examples

Convert a Decimal to a Binary Vector

binVal = decimalToBinaryVector(6)
binval =
1 1 0

Convert an Array of Decimals to a Binary Vector Array

binVal = decimalToBinaryVector(0:4)
binVal =

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

15-33

15 Functions

15-34

Convert a Decimal into a Binary Vector of Specific Bits

binVal = decimalToBinaryVector(6,8, '"MSBFirst')
binval =
0 0 0 0 0 1 1 0

Convert a Decimal into a Binary Vector with LSB First

binVal = decimalToBinaryVector(6,[], 'LSBFirst")
binval =
0 1 1

Convert an Array of Decimals into a Binary Vector Array with LSB First

binVal = decimalToBinaryVector(0:4, 4,'LSBFirst')

binval =
0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0

Input Arguments

decimalNumber — Number to convert to binary vector

numeric

The number to convert to a binary vector specified as a positive integer scalar.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

number0fBits — Number of bits required to correctly represent the decimal number
numeric

The number of bits required to correctly represent the decimal. This is an optional argument. If you
do not specify the number of bits, the number is represented using the minimum number of bits
needed. By default minimum number of bits needed to represent the value is specified, unless you
specify a value

bitOrder — Bit order for binary vector representation
'"MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string. Accepted
values are:

* 'MSBFirst' — The first element of the binary vector is the most significant bit.

decimalToBinaryVector

* 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

Output Arguments

binVal — Binary value
array of 1s and 0Os

Binary value, returned as a double array of 1s and Os.

See Also

Functions
binaryVectorToDecimal | binaryVectorToHex | hexToBinaryVector

Topics
“Generate Digital Output Using Decimal Data Across Multiple Lines” on page 9-14

Introduced in R2012b

15-35

15 Functions

15-36

disableVendorDiagnostics

Suppress vendor diagnostic display in device listing

Syntax

disableVendorDiagnostics

Description

disableVendorDiagnostics turns off the display of diagnostic information in the daglist
function output related to non-operational vendors. The display is enabled by default.

Examples

Toggle Diagnostic Display
Control the display of diagnostic information in the device listing.

Allow diagnostic information to display in the device listing. The installation does not include drivers
for 'ni' or 'mcc’.

enableVendorDiagnostics
daglist

Unable to detect 'ni' hardware:

National Instruments NI-DAQmx driver is either not installed or the installed version is not supj
Use the Windows Control Panel to uninstall any existing NI-DAQmx driver listed under 'National I
Then, open the Add-On Explorer to install the Data Acquisition Toolbox Support Package for
National Instruments NI-DAQmx Devices.

Unable to detect 'mcc' hardware:
Driver command failed with status code: -30.

ans =
1x5 table
VendorID DevicelD Description
"directsound"” "Audio®" "DirectSound Primary Sound Capture Driver"

Suppress diagnostic information in the device listing. The installation is the same.

disableVendorDiagnostics
daglist
ans =

1x5 table

VendorID DevicelID Description

disableVendorDiagnostics

"directsound" "Audio0Q" "DirectSound Primary Sound Capture Driver"

See Also

Functions
daglist | dagvendorlist | enableVendorDiagnostics

Introduced in R2020a

15-37

15 Functions

15-38

enableVendorDiagnostics

Allow diagnostic display in vendor listing

Syntax

enableVendorDiagnostics

Description

enableVendorDiagnostics turns on the display of diagnostic information in the daglist function
output related to non-operational vendors. The display is enabled by default.

Examples

Toggle Diagnostic Display
Control the display of diagnostic information in the device listing.

Allow diagnostic information to display in the device listing. The installation does not include drivers
for 'ni' or 'mcc’.

enableVendorDiagnostics
daglist

Unable to detect 'ni' hardware:

National Instruments NI-DAQmx driver is either not installed or the installed version is not supported.

Use the Windows Control Panel to uninstall any existing NI-DAQmx driver listed under 'National Instruments Software'.
Then, open the Add-On Explorer to install the Data Acquisition Toolbox Support Package for

National Instruments NI-DAQmx Devices.

Unable to detect 'mcc' hardware:
Driver command failed with status code: -30.

ans =

1x5 table
VendorID DevicelID Description
"directsound" "Audio0Q" "DirectSound Primary Sound Capture Driver"

Suppress diagnostic information in the device listing. The installation is the same.

disableVendorDiagnostics
daglist
ans =

1x5 table

VendorID DevicelID Description

enableVendorDiagnostics

"directsound" "Audio0Q" "DirectSound Primary Sound Capture Driver"

See Also

Functions
daglist | dagvendorlist | disableVendorDiagnostics

Introduced in R2020a

15-39

15 Functions

flush

Package: daq.interfaces

Flush DataAcquisition input and output buffers

Syntax
flush(d)

Description

flush(d) removes all acquired and queued scans in the input and output buffers of the
DataAcquisition interface.

Examples

Flush DataAcquisition Data

Clear all acquired and queued scans.

d = daq("ni")

o .
“©

flush(d)

Input Arguments

d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.

Example: d = daq()

See Also

Functions
daqg

Introduced in R2020a

15-40

hexToBinaryVector

hexToBinaryVector

Convert hexadecimal value to binary vector

Syntax

binVal = hexToBinaryVector (hexNumber)

binVal = hexToBinaryVector(hexNumber,numberOfBits)

binVal = hexToBinaryVector (hexNumber,numberOfBits,bitOrder)

Description

binVal = hexToBinaryVector(hexNumber) converts hexadecimal numbers to a binary vector.

binVal = hexToBinaryVector(hexNumber,numberOfBits) converts hexadecimal numbers to a
binary vector with the specified number of bits.

binVal = hexToBinaryVector(hexNumber,numberOfBits,bitOrder) converts hexadecimal

numbers to a binary vector with the specified number of bits in the specified bit ordering.

Examples

Convert a hexadecimal to a binary vector
binVal = hexToBinaryVector('Al')
binVal =

1x8 logical array

1 06 1 6 06 0 ©0 1

Convert a hexadecimal with a leading 0 to a binary Vector
binVal = hexToBinaryVector('0OxA")

binVal

1x4 logical array

1 0 1 0

Convert an Array of Hexadecimal Numbers to a Binary Vector

binVal

hexToBinaryVector(['Al';'B1'])

binVal

15-41

15 Functions

15-42

2x8 logical array

1
1

© 1 0 ©
o 1 1 0

[oNo]
[oNo]

Convert a Hexadecimal Number into a Binary Vector of Specific Bits
binVal = hexToBinaryVector('Al',612, 'MSBFirst')
binval =

1x12 logical array

© 0 0 0 1 0 1 © 0 0 0 1

Convert a Cell Array of Hexadecimal Numbers into a Binary Vector of Specific Bits
binVal = hexToBinaryVector({'Al';'B1'},8)

binVal

2x8 logical array

1
1

0 1 0 ©
0 1 1 0

[oNo]
[oNo]

Convert a Hexadecimal into a Binary Vector with LSB First
binVal = hexToBinaryVector('Al', [], 'LSBFirst')
binval =

1x8 logical array

1 O 0 0 0 1 0 1

Input Arguments

hexNumber — Hexadecimal to convert to binary vector
hexadecimal value
Hexadecimal number to convert to a binary vector, specified as a character vector or string.

Data Types: char | string

number0fBits — Number of bits to represent the decimal number
numeric

Number of bits to represent the decimal number, specified as a numeric value. This is an optional
argument. If you do not specify the number of bits, the number is represented using the minimum
number of bits needed.

hexToBinaryVector

bitOrder — Bit order for binary vector representation
'"MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string. Accepted
values are:

* 'MSBFirst' — The first element of the binary vector is the most significant bit.
* 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

Output Arguments

binVal — Binary value
array of 1s and 0Os

Binary value, returned as a logical array of 1s and 0s.

See Also

Functions
binaryVectorToDecimal | binaryVectorToHex | decimalToBinaryVector

Topics
“Acquire Digital Data in Hexadecimal Values” on page 9-12

Introduced in R2012b

15-43

15 Functions

15-44

preload

Package: daq.interfaces

Queue scan data for device output

Syntax

preload(d, scanData)

Description
preload(d, scanData) provides scan data to the DataAcquisition interface d for device output.

You queue data before calling start on your DataAcquisition. Calling start runs the
DataAcquisition in the background, without blocking MATLAB.

Examples

Queue Scan Data for Device Output
Queue scan data to the DataAcquisition interface in preparation for device output.

Define and queue a sine wave for output of one cycle on a single channel.

scanData = sin(linspace(0,2*pi,5000)");
preload(d, scanData)

o .
%

start(d)
Define and queue a sine wave for repeated output on a single channel.

scanData = sin(linspace(0,2*pi,5000)");
queue(d, scanData)

%

stért (d, "RepeatOutput")

%

stop(d)

Input Arguments

d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.

Example: d = daq(...)

scanData — Scan data for device output
double matrix

preload

Scan data for device output, specified as an M-by-N matrix, where M is the number of data scans and
N is the number of output channels in the DataAcquisition interface. For a single channel, the data is
a column vector.

Data Types: double

See Also

Functions
daqg | flush | start

Introduced in R2020a

15-45

15 Functions

15-46

read

Package: daq.interfaces

Read data acquired by hardware

Syntax

scanData = read(d)

scanData = read(d,span)

[scanData,triggerTime] = read()

scanData = read(_ ,"OutputFormat","Matrix")
[scanData,timeStamp,triggerTime] = read(_ ,"OutputFormat","Matrix")
Description

scanData = read(d) reads a single input scan from all input channels on the DataAcquisition, and
returns a timetable to scanData.

scanData = read(d, span) reads a span of input scans from the DataAcquisition interface, and
returns a timetable to scanData. You can specify span as a duration, a number of scans, or "all".

» If the DataAcquisition is not running and has no acquired data, the DataAcquisition starts a
foreground finite acquisition to read the requested number of scans. MATLAB is blocked until the
acquisition and read are complete.

» If the DataAcquisition is running when you call this function, it reads data already acquired, if
necessary waiting until the specified number of scans are available. MATLAB is blocked until the
acquisition and read are complete. This is typical when start is called to run a background
acquisition prior to calling read.

» If the DataAcquisition is not running but has acquired data from a previous run, it reads the
specified number of scans or all the data, whichever is less.

[scanData,triggerTime] = read() performs the specified read, and returns a timetable to
scanData and scan trigger time to triggerTime as a datetime.

scanData = read(,"OutputFormat", "Matrix") performs the specified read, and returns
an M-by-N matrix of doubles to scanData, where M is the number of scans and N is the number of
input channels. Each column contains the data from one channel.

[scanData,timeStamp, triggerTime] = read(_ ,"OutputFormat","Matrix") performs
the specified read and returns the scan timestamps to timeStamp, as an M-by-1 vector of doubles
representing the relative time in seconds after the first scan. The rows of the timeStamp vector
correspond to the rows of the scanData matrix. The scan trigger time is returned to triggerTime
as a datenum double.

Examples

read

Read a Single Scan

Without specifying a duration or number of scans, the read function acquires a single on-demand
scan on all channels.

d = daq("ni")
addinput(d, "Devl",1,"Voltage"); % add more channels as needed
scanData = read(d)

data =
timetable
Time Devl ail
0 sec -1.9525

Initiate a Foreground Acquisition

If there is no data available to be read from the device, the read function initiates a foreground
acquisition, blocking MATLAB until complete.

d = daq("ni");
ch = addinput(d, "Devl1l",1:2,"Voltage")

ch =

Index Type Device Channel Measurement Type Range Name
1 "ai" "Devl" "ail" "Voltage (Diff)" "-10 to +10 Volts" "Devl ail"
2 "ai" "Devl" "ai2" "Voltage (Diff)" "-10 to +10 Volts" "Devl ai2"

Read five scans of data on all channels.

scanData = read(d,5)

scanData

5x2 timetable

Time Devl ail Devl ai2
0 sec 0.1621 0.62579
0.001 sec 0.42124 0.56955
0.002 sec 0.51069 0.56002
0.003 sec 0.54193 0.56166
0.004 sec 0.55377 0.56396

Read 5 milliseconds of data on all channels.

d.Rate = 1000;
scanData = read(d,seconds(0.005))

scanData

5x2 timetable

15-47

15 Functions

Time Devl ail Devl ai2
0 sec 0.2259 0.33278
0.001 sec 0.28871 0.31699
0.002 sec 0.3068 0.31633
0.003 sec 0.3137 0.31929
0.004 sec 0.31732 0.32028

You can also read the data into arrays of double values. Five scans on two channels results in a 5-by-2
matrix, with a column for each channel.

scanData read(d,5, "OutputFormat", "Matrix")

scanData =

0.0424 0.0644
0.0572 0.0621
0.0605 0.0638
0.0618 0.0641
0.0631 0.0648

Read Data from a Background Acquisition

When a background acquisition is initiated with the start function, use read to import the data.

d = daq("ni");
ch = addinput(d, "Devl1l",1:2,"Voltage")
start(d, "NumScans",5)

Background operation has started.
Background operation will stop after 0.005 s.
To read acquired scans, use read.

scanData = read(d,"all")

scanData

5x2 timetable

Time Devl ail Devl ai2
0 sec 0.012466 0.023977
0.001 sec 0.019373 0.023319
0.002 sec 0.021017 0.02299
0.003 sec 0.021346 0.02299
0.004 sec 0.022661 0.023648

Input Arguments

d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.

15-48

read

Example: d = daq()

span — Length of read operation
duration | double

Length of read operation, specified as a duration or double. If this is a duration type, it specifies the
time duration of acquisition; if a double, it specifies the number of scans.

Example: seconds (5)

Data Types: double | duration

Output Arguments

scanData — Input scan data from the device
timetable | double

Input scan data from the device, returned as a timetable or matrix of doubles, depending on the
OutputFormat setting.

You can access the scan trigger time in the timetable property
scanData.Properties.CustomProperties.TriggerTime, returned as a datetime.

triggerTime — Time that acquisition began
datetime | datenum double

Time that acquisition began, returned as a datetime if QutputFormat is 'Timetable' (default), or
as a double if QutputFormat is 'Matrix'. This information is also available as a datetime value in
the timetable property scanData.Properties.CustomProperties.TriggerTime.

timeStamp — Times of scan acquisitions
double

Times of scan acquisitions, returned as a matrix of doubles. Each value represents relative time in
seconds after the first scan. This argument is returned only when OutputFormat is specified as
"Matrix".

See Also

Functions
start

Introduced in R2020a

15-49

15 Functions

15-50

readwrite

Package: daq.interfaces

Simultaneously read and write device channel data

Syntax

inScanData = readwrite(d,outScanData)

[inScanData,triggerTime] = readwrite(d,outScanData)

inScanData = readwrite(d,outScanData, "OutputFormat", "Matrix")
[inScanData,timeStamp,triggerTime] = readwrite(_ ,"OutputFormat", "Matrix")

Description

inScanData = readwrite(d,outScanData) writes outScanData to the DataAcquisition
interface output channels, and reads inScanData from the DataAcquisition interface input channels.
Input and output have the same number of scans, determined by the number of rows in the matrix
outScanData. By default, data is returned to inScanData as a timetable. readwrite supports only
foreground clocked operations, blocking MATLAB until complete.

[inScanData,triggerTime] = readwrite(d,outScanData) performs the read and write
operations, and also returns the scan trigger time to triggerTime as a datetime.

inScanData = readwrite(d,outScanData, "OutputFormat", "Matrix") performs the read
and write operations, returning a matrix of double values to inScanData.

[inScanData,timeStamp,triggerTime] = readwrite(_ ,"OutputFormat", "Matrix")
performs the read and write operations, also returning the scan times as a column vector of doubles
to timeStamps, and the scan trigger time to triggerTime as a datenum double. The rows of the
timeStamp vector correspond to the rows of the inScanData matrix.

Examples

Measure and Generate Simultaneously

Configure the DataAcquisition to measure and generate voltage simultaneously, in the foreground.
d = daq("ni");

addinput(d, "Devl","ai®@","Voltage");

addoutput(d, "Devl","ao0","Voltage");

outScanData = linspace(0,1,d.Rate)'; % Increase output voltage with each scan.
inScanData = readwrite(d,outScanData);

Input Arguments

d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.

Example: d = daq()

readwrite

outScanData — Scan data for device output
double matrix

Scan data for device output, specified as an M-by-N matrix, where M is the number of data scans and
N is the number of output channels in the DataAcquisition interface. For a single channel, the data is
a column vector. Single scans are not supported by this function, so M must be greater than 1.

Data Types: double

Output Arguments

inScanData — Input scan data from the device
timetable | double

Input scan data from the device, returned as a timetable or matrix of doubles, depending on the
OutputFormat setting.

You can access the scan trigger time in the timetable property
inScanData.Properties.CustomProperties.TriggerTime, returned as a datetime.

triggerTime — Time that acquisition began
datetime | datenum double

Time that acquisition began, returned as a datetime if QutputFormat is "Timetable" (default), or
as a double if OutputFormat is "Matrix". This information is also available as a datetime value in
the timetable property inScanData.Properties.CustomProperties.TriggerTime.

timeStamp — Times of scan acquisitions
double

Times of scan acquisitions, returned as a matrix of doubles. Each value represents relative time in
seconds after the first scan. This argument is returned only when OutputFormat is specified as
"Matrix".

See Also

Functions
daq

Introduced in R2020a

15-51

15 Functions

removechannel

Package: daq.interfaces

Remove channel from device interface

Syntax

removechannel(d, idx)

Description

removechannel(d, idx) removes the specified channels from the DataAcquisition interface. If the
DataAcquisition has channels with indices higher than the channels being removed, they are
renumbered to fill the empty gaps left by the removal, but the channel names do not change.

Examples

Remove Channels from DataAcquisition Interface

Remove channels from a DataAcquisition and note the index changes.

d = daq("directsound");

addinput(d, "Audio0","1","Audio");
addinput(d, "Audiol","1","Audio");
addoutput(d, "Audio3","1","Audio");
addoutput(d, "Audio6","1","Audio");

d.Channels

index Type Device Channel Measurement Type Range Name
1 "audi" "Audiol" " "Audio" 1.0 to +1.0 " "chl"
2 "audi" "Audio0" " "Audio" 1.0 to +1.0 " "ch2"
3 "audo" "Audio3" " "Audio" 1.0 to +1.0 " "ch3"
4 "audo" "Audio6" " "Audio" 1.0 to +1.0 " "ch4"

removechannel(d, 2)

d.Channels

index Type Device Channel Measurement Type Range Name
1 "audi" "Audiol" " "Audio" "-1.0 to +1.0 " "chl"
2 "audo" "Audio3" " "Audio" "-1.0 to +1.0 " "ch3"
3 "audo" "Audio6" " "Audio" "-1.0 to +1.0 " "ch4"

Note that after removal of the second channel, the remaining channels are numbered 1, 2, and 3. The
channel names are not changed.

Remove all remaining channels.

15-52

removechannel

removechannel(d, [1:length(d.Channels)])

Input Arguments

d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.

Example: d = daq()

idx — Channel index
numeric scalar | numeric vector

Channel index, specified as a numeric scalar or vector. Removing a channel shifts down the indices of
remaining higher channels, but does not change the channel names. Do not confuse the channel
index in the DataAcquisition with the channel ID of the data acquisition device.

Example: [1, 3]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

See Also

Functions
addbidirectional | addinput | addoutput | daq | daqlist

Introduced in R2020a

15-53

15 Functions

15-54

removeclock

Package: daq.interfaces

Remove clock from device interface

Syntax

removeclock(d, idx)

Description

removeclock(d, idx) removes the specified clock from the DataAcquisition interface. If the
DataAcquisition has clocks with indices higher than the clock being removed, they are renumbered to
fill the empty gaps left by the removal.

Examples

Remove Clock from DataAcquisition Interface

Remove a clock from a DataAcquisition interface.

d = daq("ni");

o .
“©

Ci(.ix = addclock(d, "ScanClock", "Devl/PFIO","Dev2/PFI0");

o .
“©

renHoveclock(d,Cidx);

Input Arguments

d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.

Example: d = daq()

idx — Clock index
numeric scalar | numeric vector

Clock index, specified as a numeric scalar or vector. Removing a clock shifts down the indices of
remaining higher clocks.

Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

See Also

Functions
addclock | daq

removeclock

Introduced in R2020a

15-55

15 Functions

15-56

removetrigger

Package: daq.interfaces

Remove trigger from device interface

Syntax

removetrigger(d,idx)

Description

removetrigger(d,idx) removes the specified trigger from the DataAcquisition interface. If the
DataAcquisition has triggers with indices higher than the trigger being removed, they are
renumbered to fill the empty gaps left by the removal.

Examples

Remove Trigger from DataAcquisition Interface

Remove a trigger from a DataAcquisition interface.

d = daq("ni");

o .
“©

Tidx = addtrogger(d,"Digital","StartTrigger","Devl/PFIQ","Dev2/PFIO");

o .
o .

removetrigger(d,Tidx);

Input Arguments

d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.

Example: d = daq()

idx — Trigger index
numeric scalar | numeric vector

Trigger index, specified as a numeric scalar or vector. Removing a trigger shifts down the indices of
remaining higher triggers.

Example: 1
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

See Also

Functions
addtrigger | daq

removetrigger

Introduced in R2020a

15-57

15 Functions

resetcounters

Package: daq.interfaces

Reset hardware scan count for all counter inputs

Syntax

resetcounters(d)

Description

resetcounters(d) resets hardware scan count for all counter inputs between on-demand reads on
the DataAcquisition d.

Examples

Acquire Edge Count and Reset Counter

Configure a DataAcquisition to measure an EdgeCount until the count exceeds a threshold, then reset
the counter.

d = dag("ni");
addinput(d, "Devl","ctro", "EdgeCount");
maxCount = 100;
count = read(d);
while count <= maxCount
count = read(d);
end
resetcounters(d);

Input Arguments

d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.

Example: d = daq()
See Also

Introduced in R2020a

15-58

start

start

Package: daq.interfaces

Start DataAcquisition background operation

Syntax

start(d)

start(d, "Continuous")
start(d, "RepeatOutput")
start(d, "Duration", span)
start(d, "NumScans", span)
Description

start(d) starts the DataAcquisition interface background operation. When the input acquisition and
output generation begin depends on channel configuration and preloaded output data:

» If the DataAcquisition has only input channels, the acquisition begins immediately, collecting scan
data, which you can access later with the read function. The default scan duration is 1 second.

» If the DataAcquisition interface has only output channels, generation begins immediately if data is
already queued with the preload function. If no data is queued, output begins when data is made
available with write function.

» If the DataAcquisition has both input and output channels, the input acquisition begins and ends
at the same time as the output generation, resulting in the same number of scans.

start(d, "Continuous") starts the background operation running continuously. If there is data
already available from the preload function, output generation begins immediately along with
acquisition on any input channels. Otherwise, acquisition begins when you execute write. The
operation continues until you call stop. As output scan data is generated or input scan data is
acquired, you might need to call write or read while the DataAcquisition is still running.

start(d, "RepeatOutput") starts the background operation, generating periodic output in a
repeating loop of the output scan data. If there is data already available from the preload function,
output generation begins immediately along with acquisition on any input channels. Otherwise,
generation and acquisition begin when you execute write. The operation continues until you call
stop. If input scan data is being acquired, you might need to call read while the DataAcquisition is
still running.

start(d,"Duration",span) or start(d, "NumScans", span) starts the background acquisition
to run for a finite span of time, specified as either a duration or a number of scans.

Examples

Read Data from a Background Acquisition

When a background acquisition is initiated with the start function, use read to import the data.

15-59

15 Functions

15-60

d = dag("ni");
ch = addinput(d, "Devl1l",1:2,"Voltage")
start(d, "NumScans",5)

Background operation has started.
Background operation will stop after 0.005 s.
To read acquired scans, use read.

scanData read(d,"all")

scanData

5x2 timetable

Time Devl ail Devl ai2
0 sec 0.012466 0.023977
0.001 sec 0.019373 0.023319
0.002 sec 0.021017 0.02299
0.003 sec 0.021346 0.02299
0.004 sec 0.022661 0.023648

Generate a Repeating Signal in the Background

Define and preload data for device output, then start output generation to repeat in the background
while MATLAB continues.

d = dag("ni");

addoutput(d, "Devl",1,"Voltage");

signalData = sin((1:1000)*2*pi/1000);
preload(d,signalData') % Column of data for one channel
start(d, "RepeatOutput")

% Device output now repeated while MATLAB continues.
stop(d)

Input Arguments

d — DataAcquisition interface

DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

span — Length of background operation
duration | double

Length of background operation, specified as a duration or double. For "Duration" specify a
duration type; for "NumScans" specify a double for the number of scans. The default is 1 second.
Example: seconds (5)

Data Types: double | duration

start

See Also

Functions
daq | preload | read | stop | write

Introduced in R2020a

15-61

15 Functions

stop

Package: daq.interfaces

Stop background operation

Syntax

stop(d)

Description

stop(d) stops the DataAcquisition interface background operations, and flushes queued output data.
Input data acquired by the operation is not flushed.

Examples

Stop DataAcquisition Operations

Stop DataAcquisition interface operations.

d = daq("ni")

o .
“©

start(d)

o .
“©

stop(d)

Input Arguments

d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.

Example: d = daq()

See Also

Functions
daq | start

Introduced in R2020a

15-62

write

write

Package: daq.interfaces

Write output scans to hardware channels

Syntax

write(d, scanData)

Description

write(d,scanData) writes scan data to the DataAcquisition interface for the device output. The

DataAcquisition might already be started or not.

» If the DataAcquisition has not been started, write sends the data and starts device output
generation. As a finite foreground generation, this blocks MATLAB until completed.

» If the DataAcquisition had already been started, write provides the data for the output operation
to begin, which then runs in the background without blocking MATLAB. The start function
arguments determine if the generation is finite, repeating, or continuous. Continuous output
requires write to provide data for as long as output is needed; multiple calls to write might be

necessary.

Examples

Write a Single Scan

If the supplied data value specifies only a single scan of data for all output channels, the write
function generates an on-demand output without clocking.

Create interface and add two output channels.

d = dag("ni");
ch = addoutput(d, "Devl1l",0:1,"Voltage");

Index Type Device Channel Measurement Type
1 "ao" "Devl" "ao0" "Voltage (SingleEnd)"
2 "ao" "Devl" "aol" "Voltage (SingleEnd)"

Output 5 volts on both channels.

write(d,[5 51)

Generate a Repeating Signal in the Background

Range

"-10 to +10 Volts"
"-10 to +10 Volts"

Name

"Devl ao0"
"Devl aol"

Start a DataAcquisition interface for background operation, then provide data for device output.

15-63

15 Functions

d = dag("ni");

addoutput(d, "Devl",1,"Voltage");
signalData = sin((1:1000)*2*pi/1000);
start(d, "RepeatOutput")

[)
%

write(d,signalData')

% Device output now repeated while MATLAB continues.
pause(5)

stop(d)

Input Arguments

d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.

Example: d = daq()

scanData — Scan data for device output
double matrix

Scan data for device output, specified as an M-by-N matrix, where M is the number of data scans and

N is the number of output channels in the DataAcquisition interface. Each column of scanData
contains the data for one channel. For a single channel, the data is a column vector.

Data Types: double

See Also

Functions
read | start

Introduced in R2020a

15-64

Apps

16 Apps

16-2

Analog Input Recorder

Acquire and visualize analog input signals

Description

The Analog Input Recorder provides a graphical interface to data acquisition devices.

Using this app, you can:

* Configure device channels and acquisition properties.

* Preview signals on several analog input channels for a selected device.

* Record analog input data for a finite period (foreground) or continuously (background).
* Create scripts in the Live Editor from the app configuration.

* Open the Signal Analyzer app of Signal Processing Toolbox™ to perform analysis on your recorded
data.

Open the Analog Input Recorder App

* MATLAB Toolstrip: On the Apps tab, under Test and Measurement, click the app.
* MATLAB command prompt: Enter analogInputRecorder.

Note Opening the Analog Input Recorder deletes all your existing DataAcquisition interfaces in
MATLAB.

The DataAcquisition interface created by the Analog Input Recorder is not accessible from the
MATLAB command line.

Limitations
The Analog Input Recorder currently supports only analog voltage input and audio input recording.

This app supports devices only from the following vendors:

¢ National Instruments ("ni")
* Windows Sound Cards ("directsound")
* Analog Devices ("adi")

The app device list includes only those devices with supported subsystems.

See Also

Apps
Analog Output Generator

Analog Input Recorder

Topics
“Acquire Data with the Analog Input Recorder” on page 6-17

Introduced in R2017b

16-3

16 Apps

Analog Output Generator

Define and generate analog output signals

Description

The Analog Output Generator provides a graphical interface to data acquisition devices.
Using this app, you can:

* Configure device channels and properties.
* Define waveforms in a workspace variable as a vector of double values, or as a timetable.
* Preview defined signals on several analog output channels for a selected device.

* Generate analog or audio output signals for a finite period (foreground) or continuously
(background).

* Create scripts in the Live Editor from the app configuration.

Open the Analog Output Generator App

* MATLAB Toolstrip: On the Apps tab, under Test and Measurement, click the app.
* MATLAB command prompt: Enter analogOutputGenerator.

Note Opening the Analog Output Generator deletes all your existing DataAcquisition interfaces in
MATLAB.

The DataAcquisition interface created by the Analog Output Generator is not accessible from the
MATLAB command line.

Limitations

The Analog Output Generator currently supports only analog voltage and current outputs, and audio
output generation.

This app supports devices only from the following vendors:

* National Instruments ("ni")
¢ Windows Sound Cards ("directsound")

The app device list includes only those devices with supported subsystems.

See Also

Apps
Analog Input Recorder

Topics
“Generate Signals with the Analog Output Generator” on page 6-21

16-4

Analog Output Generator

Introduced in R2019a

16-5

Blocks

17 Biocks

Analog Input

Acquire data from multiple analog channels of data acquisition device
Library: Data Acquisition Toolbox

AJD g

Analog Input

Description

The Analog Input block opens, initializes, configures, and controls an analog data acquisition device.
The opening, initialization, and configuration of the device occur once at the start of the model
execution. During the model run time, the block acquires data either synchronously (deliver the
current block of data the device is providing) or asynchronously (stream buffered incoming data).

The block has no input ports. It has one or more output ports, depending on the configuration you
choose in its dialog box.

Use the Analog Input block to incorporate live measured data into Simulink for:

» System characterization

* Algorithm verification

* System and algorithm modeling
* Model and design validation

* Controller design

The following diagram shows the basic analog input usage configuration, with which you can:

* Read acquired data at each time step or once per model execution.
* Analyze the data, or use it as input to a system in the model.
* Optionally display results.

Scope

Analog Input Model

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox. To see if your
device supports Simulink, refer to Supported Hardware.

17-2

https://www.mathworks.com/hardware-support/data-acquistion-software.html

Analog Input

You can use the Analog Input block only with devices that support clocked acquisition. To acquire
data using devices that do not support clocking, use the Analog Input (Single Sample) block.

Other Supported Features

» Ifyou have DSP System Toolbox™, you can use this block for signal applications.

* This block supports the use of Simulink Accelerator™ mode, but not Rapid Accelerator or code
generation.

* The block supports the use of model referencing, so that your model can include other Simulink
models as modular components.

For more information on these features, see the “Simulink” documentation.

Ports
Output

Data — Acquired analog input
double

Acquired analog input data, returned as doubles. If using only one output port for all channels, each
scan is available as a matrix of scan blocksize by number of channels, M-by-N. If using a port for each
channel, each scan results in a blocksize-by-1 column vector on each port. Multiple ports are named
by channel names or device specified channel IDs.

Data Types: double
Relative timestamp — Relative timestamps of scans

Relative timestamp of each scan, returned as a double. This port is available when you check the
Output relative timestamps on page 17-0 parameter.

Data Types: double

Parameters

Use the Block Parameters dialog box to select your acquisition mode and to set other configuration
options.

Device — Device from which you want to acquire data

The device from which you want to acquire data. The items in the list vary, depending on which
devices you have connected to your system. Devices in the list are specified by adaptor or vendor
name and unique device ID, followed by the model name of the device, for example, ni Devl
(USB-6255). The first available device is selected by default. A CompactDAQ chassis would be
shown as a single device identified by vendor name, chassis ID, and chassis model; for example, ni
cDAQ2 (cDAQ-9172).

Acquisition Mode — Synchronous setting
Asynchronous | Synchronous

Synchronous setting, specified as one of the following options.

17-3

17 Biocks

Asynchronous — In asynchronous mode, the data acquisition from the device and the simulation
happen in parallel. The model initiates the acquisition from the device when the simulation starts.
Data from the device is continuously acquired into a FIFO (first in, first out) buffer in parallel as the
simulation runs. At each time step, the model fetches data from the FIFO buffer and outputs a block
of data. The data in the FIFO buffer is contiguous according to the hardware acquisition clock.

Synchronous — In synchronous mode, the simulation is blocked while acquiring data from the
device. The model initiates the acquisition from the device at each time step and immediately enters a
wait state until the acquisition request has completed. This is unbuffered input; the block outputs the

latest block of data at each time step.

The following diagrams show the difference between synchronous and asynchronous modes for the

Analog Input block.

Synchronous Analog Input

Timestep (T1) Timestep (TZ) Timestep (T3)
| | |
5 I I I
= | @ | |
E l§% 5% 5%
@ %5 '35 %5
2 |32 152 B2
3 R KN 1 §=
@
= Block of data (B1) Block of data (B2) Block of data (B3)
=0 I acuired iz acquired iz acguired
-
Simulati ' ! | ! Time
mulation Simulation Simulation
; — e —H . —H
! is blocked . ' is blocked . is blocked
p— — —
Simulation Simulation Simulation
runs resumes resumes

At the first time step (T1), the acquisition is initiated for the required block of data (B1). The
simulation does not continue until B1 is completely acquired.

Asynchronous Analog Input - Scenario 1

=
E =
E g Timestap (T1) Timestap (T2) Timestep (T3}
g | |
22 [| |
. : :
=
_E % | | |
53 ! ! !
= A Block of data (B1) Block of data (B2) Block of data (B3)
t=f) i5 acquirad is acguired is acguired
-
! | ! | ! Time (1)
I Simulation ! I Simulation ! I Simulation !
is blocked is blocked is blocked
——————— g g
Simulation Simulation Simulation
uns MBsUmes resumeas

17-4

Analog Input

User starts simulation and
acruisition is riggered

i
=1

Scenario 1 shows the case when simulation speed outpaces data acquisition speed. At the first time
step (T1), the required block of data (B1) is still being acquired. Therefore, the simulation does not
continue until B1 is completely acquired.

Asynchronous Analog Input - Scenario 2

Timestep (T1) Timestep (T2} Timestep (T3)
I I |
Block of data (B1) Block of data (B2) Block of data (B3) Block of data (B4}
is acquirad is acquirad is acquired is acquired

Time ()

L J

Simulation runs continuoushy

Scenario 2 shows the case when data acquisition speed outpaces simulation speed. At the first time
step (T1), the required block of data (B1) has been completely acquired. Therefore, the simulation
runs continuously.

Note Several factors, including device hardware and model complexity, can affect the simulation
speed, causing both scenarios 1 and 2 to occur within the same simulation.

Channels — Device channel selection and configuration
options depend on device

Device channel selection and configuration table. The channel configuration table lists the hardware
channels of your device, and lets you select and configure them. Specify which channels to acquire
data from (by default all the channels are selected). The following parameters are specified for each
selected channel:

Channel ID — Hardware channel ID specified by the device. The Channel ID column is read-only,
and the parameters are defined when the device is selected.

Name — Channel name. By default the table displays any names provided by the hardware, but you
can edit the names. For example, if the device is a sound card with two channels, you can name them
Left and Right.

Module — Device ID the channel belongs to. The Module column is read-only. If a CompactDAQ
chassis is selected, it shows the ID of the CompactDAQ module which the channel belongs to;
otherwise the ID of the device.

Measurement Type — Measurement type of the channel. This block supports only voltage
measurement types. (For other measurement types, use a DataAcquisition object in MATLAB.)

Input Range — Input ranges available for each channel supported by the hardware, defined when a
device is selected.

17-5

17 Biocks

17-6

Terminal Configuration — Specifies the hardware terminal configuration, such as single-ended,
differential, etc. The terminal configuration options are defined by the capabilities of the selected
channel.

Coupling — Hardware coupling configuration, such as AC or DC. The coupling type is defined when
a device is selected

Number of ports — Number of output data ports
1 for all channels | 1 per channel

Number of output data ports, specified as:

1 for all channels — Output data from a single port as a matrix, with a size of blocksize by number
of channels selected.

1 per channel — Output data from N ports, where N is equal to the number of selected channels.
Each output port is a column vector with a size of blocksize-by-1. For naming, each output port uses
the channel name if one was specified, otherwise the channel ID, for example, ai0.

Input sample rate — Device sampling rate
numeric value

The rate at which samples are acquired from the device, in samples per second. This is the sampling
rate for the hardware. The sample rate must be a positive real number within the range supported by
the selected hardware.

Block size — Number of scans per time step
integer value

The number of data samples to read from the block output at each time step for each channel. It must
be a positive integer greater than or equal to 2, within the range supported by the selected hardware.

Output relative timestamps — Add timestamp output port

Select this option to output the relative data timestamps, one for each sample. This option adds a new
output port to the block. The data type of this port is double, and corresponds to the time offset in
seconds of the sample related to the start of acquisition. For asynchronous acquisition, the acquisition
is initiated once at the start of model execution, the relative timestamp is a monotonically-increasing
number relative to the start of simulation. For synchronous acquisition, an acquisition is initiated at
every time step; as a result, the relative timestamp is reset to zero every time an acquisition is
initiated.

See Also
Blocks

Analog Input (Single Sample) | Analog Output | Analog Output (Single Sample) | Digital Input (Single
Sample) | Digital Output (Single Sample)

Introduced in R2016b

Analog Output

Analog Output

Output data to multiple analog channels of data acquisition device
Library: Data Acquisition Toolbox

b D&,

Amnalog Output

Description

The Analog Output block opens, initializes, configures, and controls an analog data acquisition device.
The opening, initialization, and configuration of the device occur once at the start of the model
execution. During the model run time, the block outputs data to the hardware synchronously (outputs
the block of data as it is provided). On every time step, the block performs a blocking synchronous
write to the hardware, outputting the entire input data.

The following diagram shows the timing of the synchronous analog output.

Timestep (T1) Timestep (T2) Timestep (T3)
|4 | I a I I @ I
g | I =g 1 I8 & 1
- I E o I |5 @ 1 |l @ I
= | = .E | @ | E E | @ | & E '
= == = S = 55 =3
E K | 9 83 18 g 3 18
- | =5 | o 1 &™ | = | &% | =
E £3 3 = 51 = 8
8 52 Iz E 2 1< Ea 12
% 123 1 2 X=1 z 12 ¥=] 12
= Block of data (B1)is Black of data (B2) is Block of data (B3) is
=0 output to hardware output to hardware output to hardware
- -
I Simulai 1 1 | | Time ()
— Simulation __y " Simulation " " Simulation "
! is blocked . . is blocked ' is blocked
b —t —
Simulation Simulaticn Simulation
uns resumes FEsUmes

At the first time step (T1), data output is initiated and the corresponding block of data (B1) is output
to the hardware. The simulation does not continue until B1 is output completely.

The block has one or more input ports, depending on the option you choose in its parameters dialog
box. It has no output ports.

The Analog Output block inherits the sample time from the driving block connected to the input port.
The valid data types of the signal at the input port are double or native data types supported by the
hardware.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

You can use the Analog Output block only with devices that support clocked generation. To generate
data using devices that do not support clocking, use the Analog Output (Single Sample) block.

Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox. To see if your
device supports Simulink, refer to Supported Hardware.

17-7

https://www.mathworks.com/hardware-support/data-acquistion-software.html

17 Biocks

17-8

Other Supported Features

» This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator or code
generation.

* The block supports the use of model referencing, so that your model can include other Simulink
models as modular components.

For more information on these features, see the “Simulink” documentation.

Ports
Input

Data — Analog output to generate
double

Analog output to generate, specified as doubles. If using only one input port for all channels, specify
an M-by-N matrix for a blocksize of M scans on N channels. Each scan is a row across N channels.
Each channel outputs a column of M scans.

If using a port for each channel, specify a column of data for each channel on each port. Multiple
ports are named by channel names or device specified channel IDs.

Data Types: double

Parameters

Device — Device through which you want to output data
select available device

The device from which you want to generate data. The items in the list vary, depending on which
devices you have connected to your system. Devices in the list are specified by adaptor/vendor name
and unique device ID, followed by the model name of the device, for example, ni Devl

(USB-6255). The first available device is selected by default. A CompactDAQ chassis is shown as a
single device; vendor name, chassis ID, and chassis model would be shown in the list, for example, ni
cDAQ2 (cDAQ-9172).

Channels — Device channel selection and configuration
options depend on device

Device channel selection and configuration table. The channel configuration table lists the hardware
channels of your device, and lets you select and configure them. Specify which channels to acquire
data from (by default all the channels are selected). The following parameters are specified for each
selected channel:

Channel ID — Hardware channel ID specified by the device. The Channel ID column is read-only,
and the parameters are defined when the device is selected.

Name — Channel name. By default the table displays any names provided by the hardware, but you
can edit the names. For example, if the device is a sound card with two channels, you can name them
Left and Right.

Analog Output

Module — Device ID the channel belongs to. The Module column is read-only. If a CompactDAQ
chassis is selected, it shows the ID of the CompactDAQ module which the channel belongs to;
otherwise the ID of the device.

Measurement Type — Measurement type of the channel. This block supports only voltage
measurement types. (For other measurement types, use a DataAcquisition object in MATLAB.)

Output Range — Output ranges available for each channel supported by the hardware, defined
when a device is selected.

Number of ports — Number of input data ports
1 for all channels | 1 per channel

Number of input data ports, specified as:

1 for all channels (default) — One input port on the block for all channels. Provide data as a matrix,
with a size of scan blocksize by number of channels, M-by-N.

1 per channel — N input ports on the block, where N is equal to the number of selected channels.
Provide each port data as a column vector with a size of blocksize-by-1. For naming, each output port
uses the channel name if one was specified, otherwise the channel ID, for example, aol.

Output sample rate — Device sampling rate
numeric value

The rate at which samples are output from Simulink to the device, in samples per second. This is the

sampling rate for the hardware. The default is defined when a device is selected. The sample rate
must be a positive real number within the range allowed for the selected hardware.

See Also

Blocks
Analog Input | Analog Input (Single Sample) | Analog Output (Single Sample) | Digital Input (Single
Sample) | Digital Output (Single Sample)

Introduced in R2016b

17-9

17 Biocks

User starts simulation

—
L1
(=}

Analog Input (Single Sample)

Acquire single sample from multiple analog channels of data acquisition device

Library: Data Acquisition Toolbox
Single ’;.
Sample AD
Analog Input
(Single Sample)
Description

The Analog Input (Single Sample) block opens, initializes, configures, and controls an analog data
acquisition device. The opening, initialization, and configuration of the device occur once at the start
of the model execution. The block acquires a single sample every time step, synchronously from the
device, during the model run time.

The block has no input ports. It has one or more output ports, depending on the configuration you
choose in its dialog box.

Use the Analog Input (Single Sample) block to incorporate live measured data into Simulink for:

* System characterization

* Algorithm verification

* System and algorithm modeling
* Model and design validation

* Controller design

Analog input acquisition is done synchronously, according to the following diagram.

Timestep (T1) Timestep (T2) Timestep (T3)

Data is acquired from Data is acquired from Data is acquired from
hardware lines hardware lines hardware lines

nns

17-10

| |
Simulation Simulaticn Simulation
. — b— — b— —
' is blocked . : is blocked . is blocked

b —F —
Simulation Simulation Simulaticn

resUMmEes resumes

At the first time step (T1), data is acquired from the selected hardware channels. The simulation does
not continue until data is read from all channels.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

Analog Input (Single Sample)

Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox. To see if your
device supports Simulink, refer to Supported Hardware.

You can use Analog Input (Single Sample) block only with devices that support single sample
acquisition. If the device does not support single sample acquisition, the model generates an error. To
acquire data from devices that do not support acquisition of a single sample (such as devices
designed for sound and vibration), use the Analog Input block.

Other Supported Features

» Ifyou have DSP System Toolbox, you can use this block for signal applications.

» This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator or code
generation.

* The block supports the use of model referencing, so that your model can include other Simulink
models as modular components.

For more information on these features, see the “Simulink” documentation.

Ports
Output

Data — Acquired analog input
double

Acquired analog input data, returned as doubles. If using only one output port for all channels, the
output is an array of data. If using a port for each channel, each scan results in a single value on each
port. Multiple ports are named by channel names or device specified channel IDs.

Data Types: double
Timestamp — Timestamp of scan

Timestamp of scan, returned as a double. This port is available when you check the Output timestamp
on page 17-0 parameter.

Data Types: double

Parameters
Use the Block Parameters dialog box to select your device and to set other configuration options.
Device — Device from which you want to acquire data

The device from which you want to acquire data. The items in the list vary, depending on which
devices you have connected to your system. Devices in the list are specified by adaptor or vendor
name and unique device ID, followed by the model name of the device, for example, ni Devl
(USB-6255). The first available device is selected by default. A CompactDAQ chassis would be
shown as a single device identified by vendor name, chassis ID, and chassis model; for example, ni
cDAQ2 (cDAQ-9172).

Channels — Device channel selection and configuration
options depend on device

17-11

https://www.mathworks.com/hardware-support/data-acquistion-software.html

17 Biocks

17-12

Device channel selection and configuration table. The channel configuration table lists the hardware
channels of your device, and lets you select and configure them. Specify which channels to acquire
data from (by default all the channels are selected). The following parameters are specified for each
selected channel:

Channel ID — Hardware channel ID specified by the device. The Channel ID column is read-only,
and the parameters are defined when the device is selected.

Name — Channel name. By default the table displays any names provided by the hardware, but you
can edit the names. For example, if the device is a sound card with two channels, you can name them
Left and Right.

Module — Device ID the channel belongs to. The Module column is read-only. If a CompactDAQ
chassis is selected, it shows the ID of the CompactDAQ module which the channel belongs to;
otherwise the ID of the device.

Measurement Type — Measurement type of the channel. This block supports only voltage
measurement types. (For other measurement types, use a DataAcquisition object in MATLAB.)

Input Range — Input ranges available for each channel supported by the hardware, defined when a
device is selected.

Terminal Configuration — Specifies the hardware terminal configuration, such as single-ended,
differential, etc. The terminal configuration options are defined by the capabilities of the selected
channel.

Coupling — Hardware coupling configuration, such as AC or DC. The coupling type is defined when
a device is selected

Number of ports — Number of output data ports
1 for all channels | 1 per channel

Number of output data ports, specified as:

1 for all channels — Outputs the acquired data from a single port as a 1-by-N vector with a length
equal to the number of channels selected.

1 per channel — Outputs the acquired data from N ports, where N is equal to the number of
selected channels. Each port output is a 1-by-1 double. For naming, each output port uses the channel
name if one was specified, otherwise the channel ID, for example, ai0.

Sample time — Block execution rate
1 (default)

Specifies the sample time of the block during the simulation. This is the rate at which the block is
executed during simulation. The default value is 1 (seconds). For more information, see “What Is
Sample Time?” (Simulink).

Output timestamp — Add timestamp output port
Select this option to output the absolute timestamp of the scan. This option adds a new output port to

the block. The data type of this port is double (datenum), which corresponds to a serial date number.
You can convert the datenum into a datetime value with the datetime function.

Analog Input (Single Sample)

See Also

Blocks
Analog Input | Analog Output | Analog Output (Single Sample) | Digital Input (Single Sample) | Digital
Output (Single Sample)

Introduced in R2016b

17-13

17 Biocks

17-14

Analog Output (Single Sample)

Output single sample to multiple analog channels of data acquisition device

Library: Data Acquisition Toolbox
} Single
Sample DVA
Analog Output
(Single Sample)
Description

The Analog Output (Single Sample) block opens, initializes, configures, and controls an analog data
acquisition device. The opening, initialization, and configuration of the device occur once at the start
of the model execution. The block outputs a single sample every time step, synchronously to the
hardware, during the model run time.

The block has one or more input ports, depending on the option you choose in its dialog box. It has no
output ports. The valid data type of the signal at the input port is double.

The Analog Output (Single Sample) block inherits the sample time from the driving block connected
to the input port. Analog output is done synchronously, according to the following diagram.

Timestep (T1) Timestep (T2) Timestep (T3)
| | |
5 | | |
= | | |
g | | |
= | | |
n | | |
= | | |
o | I |
@
= Data is output to Data ks output to Data is output to
=0 hardware lines hardware lines hardware lines
-
' Simulat i ' : ' rme
(PR] L Simulation . " Simulation "
] i blocked . ' is blocked] is blocked
p— —t —t
Simulation Simulation Simulation
runs resumes resumes

At the first time step (T1), data is output to the selected hardware channels. The simulation does not
continue until data is output to all channels.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

You can use the Analog Output (Single Sample) block only with devices that support single sample
output. To send data using devices that do not support acquisition of a single sample (such as devices
designed for sound and vibration), use the Analog Output block.

Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox. To see if your
device supports Simulink, refer to Supported Hardware.

https://www.mathworks.com/hardware-support/data-acquistion-software.html

Analog Output (Single Sample)

Other Supported Features

* This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator or code
generation.

* The block supports the use of model referencing, so that your model can include other Simulink
models as modular components.

For more information on these features, see the “Simulink” documentation.

Ports
Input

Data — Analog output to generate
double

Analog output to generate, specified as doubles. If using only one input port for all channels, provide
a 1-by-N vector for a single scan on all N channels.

If using a port for each channel, provide a double value to each port. Multiple ports are named by
channel names or device specified channel IDs.

Data Types: double

Parameters

Device — Device through which you want to output data
select available device

The device from which you want to generate data. The items in the list vary, depending on which
devices you have connected to your system. Devices in the list are specified by adaptor/vendor name
and unique device ID, followed by the model name of the device, for example, ni Devl

(USB-6255). The first available device is selected by default. A CompactDAQ chassis is shown as a
single device; vendor name, chassis ID, and chassis model would be shown in the list, for example, ni
cDAQ2 (cDAQ-9172).

Channels — Device channel selection and configuration
options depend on device

Device channel selection and configuration table. The channel configuration table lists the hardware
channels of your device, and lets you select and configure them. Specify which channels to acquire
data from (by default all the channels are selected). The following parameters are specified for each
selected channel:

Channel ID — Hardware channel ID specified by the device. The Channel ID column is read-only,
and the parameters are defined when the device is selected.

Name — Channel name. By default the table displays any names provided by the hardware, but you
can edit the names. For example, if the device is a sound card with two channels, you can name them
Left and Right.

Module — Device ID the channel belongs to. The Module column is read-only. If a CompactDAQ
chassis is selected, it shows the ID of the CompactDAQ module which the channel belongs to;
otherwise the ID of the device.

17-15

17 Biocks

17-16

Measurement Type — Measurement type of the channel. This block supports only voltage
measurement types. (For other measurement types, use a DataAcquisition object in MATLAB.)

Output Range — Output ranges available for each channel supported by the hardware, defined
when a device is selected.

Number of ports — Number of input data ports
1 for all channels | 1 per channel

Number of input data ports, specified as:

1 for all channels (default) — One input port on the block provides data for all channels. Provide
data as a 1-by-N vector for N channels.

1 per channel — N input ports on the block, where N is equal to the number of selected channels.
Provide data as a double value to each port. For naming, each output port uses the channel name if
one was specified, otherwise the channel ID, for example, aol.

Sample time — Block sample time
numeric value

Block sample time, specifies the sample time of the block during the simulation. This is the rate at
which the block is executed during simulation. The default value is 1. For more information, see
“What Is Sample Time?” (Simulink).

See Also
Blocks

Analog Input | Analog Input (Single Sample) | Analog Output | Digital Input (Single Sample) | Digital
Output (Single Sample)

Introduced in R2016b

Digital Input (Single Sample)

User starts simulation

(=}

Digital Input (Single Sample)

Acquire single sample from multiple digital lines of data acquisition device

Library: Data Acquisition Toolbox
Single Sampla }
Digital Input
Digital Input
(Single Sample)
Description

The Digital Input (Single Sample) block synchronously outputs the latest scan of data available from
the digital lines selected at each simulation time step. It acquires unbuffered digital data, and
delivers this as a vector of boolean values.

The block has no input ports. It has one or more output ports, depending on the option you choose in
its dialog box.

The block inherits the sample time of the model. Digital input acquisition is done synchronously,
according to the following diagram.

Timestep (T1) Timestep (T2) Timestep (T3)
|

Data is acquired from Data is acquired from Data is acquired from
hardware lines hardware lines hardware lines

J |
I | | |
Simulation Simulation Simulation
; — L —H L —H
! is blocked : : is blocked : is blocked
b —F —
Simulation Simulation Simulaticn

nns resUMmEes resumes

»
Time (t)

At the first time step (T1), data is acquired from the selected hardware lines. The simulation does not
continue until data is read from all lines.

Note To use this block, you need both Data Acquisition Toolbox and Simulink software.

Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox. To see if your
device supports Simulink, refer to Supported Hardware.

Other Supported Features

* This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator or code
generation.

* The block supports the use of model referencing, so that your model can include other Simulink
models as modular components.

17-17

https://www.mathworks.com/hardware-support/data-acquistion-software.html

17 Biocks

17-18

For more information on these features, see the “Simulink” documentation.

Ports
Output

Data — Acquired digital input
boolean

Acquired digital input data, returned as booleans. If using only one output port for all lines, the
output is a 1-by-N vector for N channels. If using a port for each line, each scan results in a single
boolean on each port. Multiple ports are named by line names or device specified line IDs.

Data Types: Boolean

Timestamp — Timestamp of scan
double

Timestamp of scan, returned as a double. This port is available when you check the Output timestamp
on page 17-0 parameter.

Data Types: double

Parameters
Device — Device from which you want to acquire data

The device from which you want to acquire data. The items in the list vary, depending on which
devices you have connected to your system. Devices in the list are specified by adaptor or vendor
name and unique device ID, followed by the model name of the device, for example, ni Devl
(USB-6255). The first available device is selected by default. A CompactDAQ chassis would be
shown as a single device identified by vendor name, chassis ID, and chassis model; for example, ni
cDAQ2 (cDAQ-9172).

Lines — Device line selection and configuration
options depend on device

Line ID — ID of the hardware line (for example, port0/line0). This is automatically detected and filled
in by the selected device, and is read-only.

Name — Hardware line name. This is automatically detected and filled in from the hardware, though
you can edit the name.

Module — Device ID that the line belongs to. The Module column is read-only. If a CompactDAQ
chassis is selected, it shows the ID of the CompactDAQ module which the line belongs to; otherwise
the ID of the device.

Number of ports — Number of output data ports
1 for all lines | 1 per line

Number of output data ports, specified as:

1 for all lines — The block has only one output port for all of the lines that are selected in the table.
Acquired data is returned as a 1-by-N vector of boolean values, whose size is the number of lines.

Digital Input (Single Sample)

1 per line — The block has one output port per selected line. Data is returned as a 1-by-1 boolean
value on each port. The name of each output port is the name specified in the table for each line. If no
name is provided, the name is the Line ID. For example, if line 2 of hardware port 3 is selected, and
you did not specify a name in the line table, port3/1ine2 appears in the block. Data size for each
line is 1-by-1.

Sample time — Block execution rate
1 (default)

Specifies the sample time of the block during the simulation. This is the rate at which the block is
executed during simulation. The default value is 1 (seconds). For more information, see “What Is
Sample Time?” (Simulink).

Output timestamp — Add timestamp output port

Select this option to output the absolute timestamp of the scan. This option adds a new output port to
the block. The data type of this port is double (datenum), which corresponds to a serial date number.
You can convert the datenum into a datetime value with the datetime function.

See Also

Blocks
Analog Input | Analog Input (Single Sample) | Analog Output | Analog Output (Single Sample) | Digital
Output (Single Sample)

Introduced in R2016b

17-19

17 Biocks

Digital Output (Single Sample)

Output single sample to multiple digital lines of data acquisition device

Library: Data Acquisition Toolbox
) Single Sample
Digital Cutput
Digital Cutput
(Single Sample)
Description

The Digital Output (Single Sample) block synchronously outputs the latest set of data to the hardware
at each simulation time step. It outputs unbuffered digital data. Specify the output data as a vector of
boolean values.

The block has no output ports. It can have one or more input ports, depending on the option you
choose in its dialog box. The data type of the signal at the input port must be a boolean data type.

The Digital Output (Single Sample) block inherits the sample time from the driving block connected
to the input port. Digital output is done synchronously, according to the following diagram.

Timestep (T1) Timestep (T2) Timestep (T3)
! | I
g ! | I
] ! | |
E ! I |
& ! I |
" ! | |
= ! | |
- ! | |
@
= Data is output to Data ks output to Data is output to
=0 hardware lines hardware lines hardware lines
-
' Simulat i ' : ' rime
mulaten g Simulation Simulation d
' is blocked ' ' is blocked ' is blocked
b — —
Simulation Simulation Simulation
ns resumes resumes

At the first time step (T1), data is output to the selected hardware lines. The simulation does not
continue until data is output to all lines.

Note To use this block, you need both Data Acquisition Toolbox and Simulink software.

Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox. To see if your
device supports Simulink, refer to Supported Hardware.

Other Supported Features

* This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator or code
generation.

17-20

https://www.mathworks.com/hardware-support/data-acquistion-software.html

Digital Output (Single Sample)

* The block supports the use of model referencing, so that your model can include other Simulink
models as modular components.

For more information on these features, see the “Simulink” documentation.

Ports
Input

Data — Generated digital output data
boolean

Generated digital output data, specified as booleans. If using only one input port for all lines, provide
a 1-by-N vector of data. If using a port for each line, provide a single value on each port. Multiple
ports are named by line names or device specified line IDs.

Data Types: Boolean

Parameters
Device — Device with which you want to generate data

The device from which you want to acquire data. The items in the list vary, depending on which
devices you have connected to your system. Devices in the list are specified by adaptor or vendor
name and unique device ID, followed by the model name of the device, for example, ni Devl
(USB-6255). The first available device is selected by default. A CompactDAQ chassis would be
shown as a single device identified by vendor name, chassis ID, and chassis model; for example, ni
cDAQ2 (cDAQ-9172).

Lines — Device line selection and configuration
options depend on device

Line ID — ID of the hardware line (for example, port0/line0). This is automatically detected and filled
in by the selected device, and is read-only.

Name — Hardware line name. This is automatically detected and filled in from the hardware, though
you can edit the name.

Module — Device ID that the line belongs to. The Module column is read-only. If a CompactDAQ
chassis is selected, it shows the ID of the CompactDAQ module which the line belongs to; otherwise
the ID of the device.

Number of ports — Number of input data ports
1 for all lines | 1 per line

Number of input data ports, specified as:

1 for all lines — The block has only one input port for all of the lines that are selected in the table.
Generated data is defined as a 1-by-N row vector of boolean values, whose size is the number of lines.

1 per line — The block has one input port per selected line. The name of each input port is the name
specified in the table for each line. If no name is provided, the name is the Line ID. For example, if
line 2 of hardware port 3 is selected, and you did not specify a name in the line table, port3/1line2
appears in the block. Data size for each line is 1-by-1.

17-21

17 Biocks

Sample time — Block execution rate
1 (default)

Specifies the sample time of the block during the simulation. This is the rate at which the block is
executed during simulation. The default value is 1 (seconds). For more information, see “What Is
Sample Time?” (Simulink).

See Also

Blocks
Analog Input | Analog Input (Single Sample) | Analog Output | Analog Output (Single Sample) | Digital
Input (Single Sample)

Introduced in R2016b

17-22

Troubleshooting Your Hardware

This appendix describes simple tests you can perform to troubleshoot your data acquisition hardware.
The tests involve using software provided by the vendor, the operating system (sound cards), or Data
Acquisition Toolbox software. The sections are as follows.

A Troubleshooting Tips

Troubleshooting Tips

In this section...

“Find Devices and Create a DataAcquisition Interface” on page A-2

“Is My NI-DAQ Driver Supported?” on page A-3

“Why Doesn’t My NI Hardware Work?” on page A-3

“Why Was My DataAcquisition Deleted?” on page A-4

“Cannot Find Hardware Vendor” on page A-4

“Cannot Find Devices” on page A-4

“What Is a Reserved Hardware Error?” on page A-5

“Network Device Appears Unsupported” on page A-5

“ADC Overrun Error with External Clock” on page A-6

“Cannot Add Clock Connection to PXI Devices” on page A-6

“Cannot Complete Long Foreground Acquisition” on page A-6

“Cannot Use PXI 4461 and 4462 Together” on page A-6

“Cannot Get Correct Scan Rate with Digilent Devices” on page A-6

“Cannot Simultaneously Acquire and Generate with myDAQ Devices” on page A-6
“Simultaneous Analog Input and Output Not Synchronized Correctly” on page A-7
“Counter Single Scan Returns NaN” on page A-7

“External Clock Will Not Trigger Scan” on page A-7

“Why Does My S/PDIF Device Time Out?” on page A-7

“MOTU Device Not Working Correctly” on page A-7

Find Devices and Create a DataAcquisition Interface

Identify the devices you can access:

dev = daqglist

dev =
9x5 table
VendorID DevicelID Description Model
"ni" "Devl" "National Instruments(TM) USB-6211" "USB-6211"
"ni" "Dev2" "National Instruments(TM) USB-6218" "USB-6218"
"ni" "Dev3" "National Instruments(TM) USB-6255" "USB-6255"
"ni" "Dev4" "National Instruments(TM) USB-6509" "USB-6509"
"ni" "PXI1Slot2" "National Instruments(TM) PXIe-6341" "PXIe-6341"
"directsound" "Audio0Q" "DirectSound Primary Sound Capture Driver" "Primary Sound Capture Driver"
"directsound" "Audiol" "DirectSound Headset Microphone (Plantronics BT600)" "Headset Microphone (Plantronics BT600)"
"directsound" "Audio2" "DirectSound Primary Sound Driver" "Primary Sound Driver"
"directsound" "Audio3" "DirectSound Headset Earphone (Plantronics BT600)" "Headset Earphone (Plantronics BT600)"

Create a DataAcquisition object for a specific vendor:

d = dagq("ni")

For more information on the DataAcquisition interface, see “The DataAcquisition Object” on page 3-2.

Troubleshooting Tips

To learn more about how to communicate with CompactDAQ devices, see “Interface Workflow” on
page 4-2.

Is My NI-DAQ Driver Supported?

Data Acquisition Toolbox software is compatible with only specific versions of the NI-DAQ driver, and
is not guaranteed to work with any other versions. For a list of the NI-DAQ driver versions that are
compatible with Data Acquisition Toolbox software, see https://www.mathworks.com/hardware-
support/data-acquistion-software.html, and click the link for this vendor.

To see your installed driver version, type:

v = daqvendorlist

Vv =

5x4 table
ID FullName AdaptorVersion DriverVersion
"ni" {'National Instruments(TM)'} 4.1 (R2020a)" "18.5.0 NI-DAQmx"
"adi" {'Analog Devices Inc.' } 4.1 (R2020a)" "1.0"
"directsound" {'DirectSound' } "4.1 (R2020a)" "n/a"
"digilent" {'Digilent Inc.' } 4.1 (R2020a)" "3.7.20"
"mcc" {'Not Operational' } 4.1 (R2020a)" "unknown"

If the version in the DriverVersion field does not match the minimum requirements specified on
the product page on the MathWorks website, use the Add-On Manager to update your support
package.

If your driver is incompatible with Data Acquisition Toolbox, verify that your hardware is functioning
properly before updating drivers. If your hardware is not functioning properly, you are using
unsupported drivers. For the latest NI-DAQ drivers, visit the National Instruments website at
https://www.ni.com/.

To find driver version in the National Instruments Measurement & Automation Explorer:

1 Click Start > Programs > National Instruments > Measurement & Automation Explorer.
2 Select Help > System Information.

Why Doesn’t My NI Hardware Work?

Use the Test Panel to troubleshoot your National Instruments hardware. The Test Panel allows you
to test each subsystem supported by your device, and is installed as part of the NI-DAQmzx driver
software. Right-click the device in the Measurement & Automation Explorer and choose Test Panel.

For example, to verify that the analog input subsystem on your PCle-6363 device is operating,
connect a known signal (similar to the signal produced by a function generator) to one or more
channels, using a screw terminal panel.

If the Test Panel does not provide you with the expected results for the subsystem, and you are sure
that your test setup is configured correctly, then the hardware is not performing correctly.

For National Instruments hardware support, visit https://www.ni.com/.

https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.ni.com/
https://www.ni.com/

A Troubleshooting Tips

Why Was My DataAcquisition Deleted?

An interface object can might silently be deleted while executing a background operation. This could
be caused by the object going out of scope at the end of a MATLAB function, before the background
task completes. To avoid this, insert a pause after starting the operation.

Cannot Find Hardware Vendor

If you try to get vendor information using dagvendorlist, and receive one of the following errors:

NI-DAQmx driver mismatch:
Diagnostic Information from vendor: NI: There was a driver error while
loading the MEX file to communicate with National Instruments hardware.

It is possible that the NI-DAQmx driver is not installed or is older than
the required minimum version of '8.7'.

Install the NI-DAQmx driver of version specified in the error message.

If you have a version of the NI-DAQmzx driver already installed, update your installation to the
minimum required version suggested in the error message.

No vendors found:
No data acquisition vendors available.
Reinstall Data Acquisition Toolbox software and applicable support packages.

Corrupted or missing toolbox components:

Diagnostic Information from vendor: NI: The required MEX file to communicate
with National Instruments hardware is not in the expected location.

Reinstall Data Acquisition Toolbox software and applicable support packages.

Diagnostic Information from vendor: NI: The required MEX file to communicate
with National Instruments hardware exists but appears to be corrupt.

Reinstall Data Acquisition Toolbox software and applicable support packages.

Cannot Find Devices

If you try to find information using daqlist and:

Do not see the expected device listed, refresh the toolbox, with

dagreset
If you still do not see the expected devices, go to the National Instruments Measurement &

Automation Explorer (NI MAX) and examine the devices installed on your CompactDAQ chassis.
Receive one of the following errors

* No data acquisition devices available.

* Go to NI MAX and examine the devices installed on your CompactDAQ chassis.

* Ifyou cannot see your devices in NI MAX, check to see if you have turned on and connected
your chassis.

» Ifyou have turned on and connected your chassis and issued daqreset, and you can see
the devices in NI MAX, reinstall Data Acquisition Toolbox software.

Troubleshooting Tips

* The requested subsystem does not exist on this device.

You could be:

* Using an output device to add input channels, or an input device to add output channels.
* Using an unsupported device. See “Data Acquisition Toolbox Supported Hardware”.

* Ifyou are using NI 9402 with the counter/timer subsystem with the cDAQ-9172 chassis, plug the
module into slots 5 or 6 only. If you plug the module into one of the other slots, it will not show any
counter/timer subsystem.

» Ifyou are using an Ethernet or WiFi network CompactDAQ chassis, reserve the chassis in National
Instruments Measurement & Automation Explorer (NI Max) first. Only one system can reserve this
chassis at a time. For more information, see Why can't Data Acquisition Toolbox detect my NI DAQ
devices connected through a cDAQ network chassis?.

What Is a Reserved Hardware Error?

If you receive the following error:
The hardware is reserved. If you are using it in another

object use the release function to unreserve the hardware. If you are using it in an
external program exit that program. Then try this operation again.

Identify the DataAcquisition that is currently not using this device but has reserved it, and release the
associated hardware resources. If the device is reserved by:

Another DataAcquisition in the current MATLAB program.
Do one of the following:

* Use release to release the device from the other DataAcquisition.
* Delete the other DataAcquisition object.

Another DataAcquisition in a separate MATLAB program.
Do one of the following:

» Use release to release the device from the other DataAcquisition.
* Delete the other DataAcquisition object.
* Exit the other MATLAB program.

Another application.
Exit the other application.

In these measures do not work, reset the device from NI MAX.

Note Your network device might also appear as unsupported in the device information if it is
reserved or disconnected.

Network Device Appears Unsupported

» If your network device appears as unsupported or unavailable, make sure that the device is
connected and reserved in National Instruments Measurement and Automation Explorer. Use
daqreset to reset devices settings.

https://www.mathworks.com/matlabcentral/answers/354916-why-cannot-data-acquisition-toolbox-detect-my-ni-daq-devices-connected-through-a-cdaq-network-chassi
https://www.mathworks.com/matlabcentral/answers/354916-why-cannot-data-acquisition-toolbox-detect-my-ni-daq-devices-connected-through-a-cdaq-network-chassi

A Troubleshooting Tips

» If you see this timeout error when communicating with a network device:

Network timeout error while communicating with device 'cDAQ9188-1595393Mod4’

reconnect the device in National Instruments Measurement and Automation Explorer and execute
daqreset in MATLAB to reset the devices settings.

ADC Overrun Error with External Clock

If you see this error when you synchronize acquisition using an external clock,

ADC Overrun Error: If you are using an external clock, make sure that
the clock frequency matches scan rate.

* Check your external clock for the presence of noise or glitches.

* Check the frequency of your external clock. Make sure that it matches the DataAcquisition Rate
property value.

Cannot Add Clock Connection to PXI Devices

When you try to synchronize operations using a PXI 447x series device, you see this error:
"DSA device 'PXI1Slot2' does not support sample clock synchronization. Check device's user manual.
National Instruments DSA devices like the PXI 447x, do not support sample clock synchronization.

You cannot synchronize these devices in the DataAcquisition interface using addclock.

Cannot Complete Long Foreground Acquisition

When you try to acquire data in the foreground for a long period, you might get an out-of-memory
error. Switch to background acquisitions and process data as it is received or save the data to a file to
mitigate this issue.

Cannot Use PXI 4461 and 4462 Together

You cannot use a PXI 4461 and a 4462 together for synchronization, when the PXI 4461 is in the
timing slot of the chassis.

Cannot Get Correct Scan Rate with Digilent Devices

The scan rate of a Digilent device can be limited by the hardware buffer size. See “Digilent Analog
Discovery Hardware Limitations” on page B-4 for more information on maximum and minimum
allowable rates.

Cannot Simultaneously Acquire and Generate with myDAQ Devices

You cannot acquire and generate synchronous data using myDAQ devices because they do not share a
hardware clock. If you have both input and output channels in a DataAcquisition, when you start it
you achieve near-simultaneous acquisition and generation. See “Automatic Synchronization” on page
13-4 for more information.

Troubleshooting Tips

Simultaneous Analog Input and Output Not Synchronized Correctly

To simultaneously acquire and generate synchronized analog signals in the same DataAcquisition, try
using an external trigger.

Counter Single Scan Returns NaN

An input single scan on counter input channels might return a NaN. If this occurs:

* Make sure that the signal voltage complies with TTL voltage specifications.
* Make sure that the channel frequency is within the specified frequency range.

External Clock Will Not Trigger Scan

Adding an external clock to your DataAcquisition might not trigger a scan unless you set the Rate
property value to match the expected external clock frequency.

Why Does My S/PDIF Device Time Out?

S/PDIF audio ports appear in the device list even when you have no devices plugged in.
* Ifyou add this device (port) to your DataAcquisition and you have no device plugged into the port,
the operation times out.

» If you have a device plugged into the S/PDIF port, you may need to match the DataAcquisition rate
to the device scan rate to get accurate readings. Refer to your device documentation for
information.

MOTU Device Not Working Correctly

MOTU devices Ultralight-mk3 and Traveler-mk3 may not work with DirectSound and Data Acquisition
Toolbox versions R2014a and R2014b. If you have these devices, specify the device to use stereo
pairs:

* In your MOTU Audio Console check "Use Stereo Pairs for Windows Audio" check box.

* Specify desired sample rate in the Sample Rate field.

A Contact Mathworks for Technical Support

Contact MathWorks for Technical Support

If you need support from MathWorks, visit the support website at https://www.mathworks.com/
support/.

Before contacting MathWorks, you should run the dagsupport function in MATLAB. This function
returns diagnostic information such as:

» The versions of MathWorks products you are using
* Your MATLAB software path
» The characteristics of your hardware

The output from dagsupport is automatically saved to a text file, which you can use to help
troubleshoot your problem or send to MathWorks technical support if requested.

https://www.mathworks.com/support/
https://www.mathworks.com/support/

Hardware Limitations by Vendor

This topic describes limitations of using hardware in the Data Acquisition Toolbox based on
limitations places by the hardware vendor:

B Limitations by Vendor

Limitations by Vendor

B-2

For some vendors, there are limitations in the toolbox support for their functionality. See the
following topics for each vendor.

“Digilent Analog Discovery Hardware Limitations” on page B-4
“Measurement Computing Hardware Limitations” on page B-5
“National Instruments Hardware Limitations” on page B-3
“Analog Devices ADALM1000 Limitations” on page B-6

National Instruments Hardware Limitations

National Instruments Hardware Limitations

Required hardware drivers and any other device-specific software is described in the
documentation provided by your hardware vendor. For more information, see NI-DAQmx Support
from Data Acquisition Toolbox.

You can use PXI STAR with the addtrigger and addclock functions. All supported PXI modules
automatically use the reference Clock PXI CLK10.

Objects created for National Instruments devices, and used with the NI-DAQmx adaptor, have the
following behavior when you attempt single scan (on-demand) operations:

* The first time the command is used with the object, the corresponding subsystem of the device
is reserved by the DataAcquisition object in MATLAB.

* Ifyou then try to access that subsystem in a different MATLAB DataAcquisition, or any other
application from the same computer, you might receive an error message informing you that
the subsystem is reserved. Use release to unreserve the subsystem from the other
DataAcquisition.

You cannot acquire and generate synchronous data using myDAQ devices because they do not
share a hardware clock. If you have both input and output channels in a DataAcquisition, when
you start it you achieve near-simultaneous acquisition and generation. See “Automatic
Synchronization” on page 13-4 for more information.

NI USB devices that have their own power supply can shut down if the driver does not set the
USB power correctly.

Note The Traditional NI-DAQ adaptor will be deprecated in a future version of the toolbox. If you
create a Data Acquisition Toolbox™ object for Traditional NI-DAQ adaptor beginning in R2008b, you
will receive a warning stating that this adaptor will be removed in a future release. For more
information, see the supported hardware page at https://www.mathworks.com/hardware-
support/data-acquistion-software.html.

B-3

https://www.mathworks.com/hardware-support/nidaqmx.html
https://www.mathworks.com/hardware-support/nidaqmx.html
https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com/hardware-support/data-acquistion-software.html

B Digilent Analog Discovery Hardware Limitations

Digilent Analog Discovery Hardware Limitations

B-4

You cannot use multiple Digilent devices in the same DataAcquisition interface. If you need to use

multiple devices, add one device per DataAcquisition and start them sequentially.

Digilent devices limit the minimum and maximum allowable rate of sampling based on channel
types:

* Analog input only: 0.1 - 1,000,000

* Analog output only: 4,096 - 1,000,000

* Input and output: 8,192 - 300,000

Data Acquisition Toolbox conforms to the Digilent Player Mode for the Arbitrary Waveform
Generator.

You cannot use background operations with Digilent devices. You can only perform foreground
operations.

You cannot perform synchronous and triggered operations using a Digilent device.
You cannot access the digital input and output capabilities of a Digilent device.

Measurement Computing Hardware Limitations

Measurement Computing Hardware Limitations

For your Measurement Computing device to appear in the output of the daglist function, you
must first detect it in InstaCal.

MCC devices are not supported by the Simulink blocks of the Data Acquisition Toolbox block
library.

MCC devices are not supported by the Analog Input Recorder.
External clocking and triggering of MCC devices is not supported.

Support for MCC devices is limited to analog output voltage and analog input voltage
measurements.

MCC DEMO-BOARD devices simulated in Instacal are not supported.

B Analog Devices ADALM1000 Limitations

Analog Devices ADALM1000 Limitations

The following restrictions and limitations apply when programming the Analog Devices ADALM1000.
Some are restrictions of the hardware, some are restrictions imposed by Data Acquisition Toolbox.

B-6

You cannot add channels from multiple ADALM1000 modules in the same DataAcquisition object.
To recover from attempting this, you might need to execute daqreset.

You cannot simultaneously source and measure voltage on the same channel, nor simultaneously
source and measure current on the same channel.

You cannot execute a single-scan operation that performs both source and measurement
simultaneously.

You cannot use AC coupling, nor differential terminal configurations.
You cannot use triggers or digital pins.
You cannot measure current without generating an output voltage.

When specified output ranges are exceeded, the device might reset itself. Any measurements
taken during this time might be unreliable until the reset is complete.

Not all data acquisition background operations are supported. Use foreground operation for full
generation and acquisition functionality.

Examples by Vendor

Examples by Vendor

See the following topics for examples of each hardware vendor.

“Analog Devices ADALM1000 Examples” on page B-8
“Digilent Analog Discovery Hardware Examples” on page B-9
“Measurement Computing Hardware Examples” on page B-10
“National Instruments Hardware Examples” on page B-11
“Windows Sound Card Examples” on page B-13

B Analog Devices ADALM1000 Examples

Analog Devices ADALM1000 Examples

B-8

“Characterize an LED with ADALM1000”

“Estimate the Transfer Function of a Circuit with ADALM1000”

See Also

More About

. “Digilent Analog Discovery Hardware Examples” on page B-9
. “Measurement Computing Hardware Examples” on page B-10
. “National Instruments Hardware Examples” on page B-11

. “Windows Sound Card Examples” on page B-13

Digilent Analog Discovery Hardware Examples

Digilent Analog Discovery Hardware Examples

“Getting Started Acquiring Data with Digilent Analog Discovery”

“Getting Started Generating Data with Digilent® Analog Discovery™”

“Acquiring and Generating Data at the Same Time with Digilent Analog Discovery”
“Generate Standard Periodic Waveforms Using Digilent Analog Discovery”

“Generate Arbitrary Periodic Waveforms Using Digilent Analog Discovery”
See Also

More About

. “Analog Devices ADALM1000 Examples” on page B-8

. “Measurement Computing Hardware Examples” on page B-10
. “National Instruments Hardware Examples” on page B-11

. “Windows Sound Card Examples” on page B-13

B-9

B Measurement Computing Hardware Examples

Measurement Computing Hardware Examples
“Getting Started with MCC Devices”
“Discover MCC Devices”

“Acquire Data from Multiple Channels using an MCC Device”
See Also

More About

. “Analog Devices ADALM1000 Examples” on page B-8

. “Digilent Analog Discovery Hardware Examples” on page B-9
. “National Instruments Hardware Examples” on page B-11

. “Windows Sound Card Examples” on page B-13

B-10

National Instruments Hardware Examples

National Instruments Hardware Examples

Getting Started and Device Discovery
“Getting Started with NI Devices”

“Discover NI Devices”

Analog Input and Output

“Acquire Data Using NI Devices”

“Acquire Continuous and Background Data Using NI Devices”
“Acquire Data From an Accelerometer”

“Measure Strain Using an Analog Bridge Sensor”

“Acquire Temperature Data From a Thermocouple”

“Acquire Temperature Data From an RTD”

“Acquire and Analyze Sound Pressure Data From an IEPE Microphone”
“Acquire and Analyze Noisy Clock Signals”

“Generate Voltage Signals Using NI Devices”

“Generate Signals on NI Devices That Output Current”

“Generate Continuous and Background Signals Using NI Devices”
“Acquire Data and Generate Signals at the Same Time”

“Log Analog Input Data to a File Using NI Devices”

“Capture Data with Software-Analog Triggering”

“Create an App for Analog Triggered Data Acquisition”

“Create an App for Live Data Acquisition”

Digital Input and Output
“Control Stepper Motor using Digital Outputs”

“Communicate with I2C Devices and Analyze Bus Signals Using Digital 10”

Counters and Timers
“Count Pulses on a Digital Signal Using NI Devices”

“Measure Frequency Using NI Devices”

B-11

B national Instruments Hardware Examples

B-12

“Measure Pulse Width Using NI Devices”
“Generate Pulse Width Modulated Signals Using NI Devices”

“Measure Angular Position with an Incremental Rotary Encoder”

Simultaneous and Synchronized Operations
“Synchronize NI PCI Devices Using RTSI”
“Start a Multi-Trigger Acquisition on an External Event”

“Acquire Data from Two Devices at Different Rates”

Simulink Data Acquisition
“Perform Live Acquisition, Signal Processing, and Generation”

“Perform Spectral Analysis on Live Data”
See Also

More About

. “Analog Devices ADALM1000 Examples” on page B-8

. “Digilent Analog Discovery Hardware Examples” on page B-9
. “Measurement Computing Hardware Examples” on page B-10
. “Windows Sound Card Examples” on page B-13

Windows Sound Card Examples

Windows Sound Card Examples

“Acquire Continuous Audio Data”
“Generate Audio Signals”
“Generating Multichannel Audio”

“Create an App for Analog Triggered Data Acquisition by Using Stateflow Charts”

See Also

More About

. “Analog Devices ADALM1000 Examples” on page B-8

. “Digilent Analog Discovery Hardware Examples” on page B-9
. “Measurement Computing Hardware Examples” on page B-10
. “National Instruments Hardware Examples” on page B-11

B-13

	Introduction to Data Acquisition
	Data Acquisition Toolbox Product Description
	Product Capabilities
	Understanding Data Acquisition Toolbox
	Supported Hardware

	Anatomy of a Data Acquisition Experiment
	System Setup
	Calibration
	Trials

	Data Acquisition System
	Overview
	Data Acquisition Hardware
	Sensors
	Signal Conditioning
	The Computer
	Software

	Analog Input Subsystem
	Function of the Analog Input Subsystem
	Sampling
	Quantization
	Channel Configuration
	Transferring Data from Hardware to System Memory

	Making Quality Measurements
	What Do You Measure?
	Accuracy and Precision
	Noise
	Matching the Sensor Range and A/D Converter Range
	How Fast Should a Signal Be Sampled?

	Selected Bibliography

	Using Data Acquisition Toolbox Software
	Installation Information
	Prerequisites
	Toolbox Installation
	Hardware and Driver Installation

	Access Your Hardware
	Connect to Your Hardware
	Examine Your Hardware Resources
	Acquire Audio Data
	Generate Audio Data
	Acquire and Generate Digital Data

	Introduction to the DataAcquisition Interface
	The DataAcquisition Object
	Get Command-Line Help

	Using the DataAcquisition Interface
	Interface Workflow
	Working a DataAcquisition
	DataAcquisition Interface and Data Acquisition Toolbox

	Digital Input and Output
	Discover Hardware Devices
	Create a DataAcquisition Interface

	Support Package Installer
	Install Hardware Support Package for Vendor Support
	Install Support Packages
	Update or Uninstall Support Packages

	Analog Input and Output
	Acquire Data in the Foreground
	Acquire Data from Multiple Channels
	Acquire Data in the Background
	Acquire Bridge Measurements
	Acquire Sound Pressure Data
	Acquire IEPE Data
	Generate Signals in the Foreground
	Generate Signals on Multiple Channels
	Generate Signals in the Background
	Generate Signals in the Background Continuously
	Acquire Data and Generate Signals Simultaneously
	Acquire Data with the Analog Input Recorder
	Generate Signals with the Analog Output Generator

	Analog Devices Active Learning Module
	Analog Devices ADALM1000 Hardware
	Generate and Measure Signals with Analog Devices ADALM1000
	Updated Function Syntax
	Source Voltage and Measure Current
	Generate a Pulse
	Generate Waveforms

	Counter Input and Output
	Analog and Digital Counters
	Acquire Counter Input Data
	Add Counter Input Channel
	Acquire a Single Count
	Acquire a Single Frequency Count
	Acquire Counter Input Data in the Foreground

	Generate Pulse Data on a Counter Channel
	Add Counter Output Channels
	Generate Pulses on a Counter Output Channel

	Digital Operations
	Digital Subsystem Channels
	Digital Clocked Operations
	Access Digital Subsystem Information

	Acquire Non-Clocked Digital Data
	Acquire Digital Data Using a Shared Clock
	Acquire Digital Data Using an External Clock
	Acquire Digital Data Using a Counter Output Channel as External Clock
	Generate a Clock Using a Counter Output Channel
	Use Counter Clock to Acquire Clocked Digital Data

	Acquire Digital Data Using an External Clock via Chassis PFI Terminal
	Acquire Digital Data in Hexadecimal Values
	Generate Non-Clocked Digital Data
	Generate Digital Output Using Decimal Data Across Multiple Lines
	Generate and Acquire Data on Bidirectional Channels
	Generate Signals on Both Analog and Digital Channels

	Multichannel Audio
	Audio Input and Output
	Multichannel Audio Scan Rate
	Audio Measurement Range
	Acquire Audio Data

	Waveform Function Generation
	Digilent Analog Discovery Devices
	Digilent Function Waveform Generator Channels
	Waveform Types
	Generate a Standard Waveform Using Function Waveform Generator Channels

	Triggers and Clocks
	Trigger Connections
	When to Use Triggers
	External Triggering

	Acquire Voltage Data Using a Digital Trigger
	Clock Connections
	When to Use Clocks
	Import Scan Clock from External Source
	Export Scan Clock to External System

	Synchronization
	Synchronization
	Shared Triggers and Shared Scan Clocks
	Source and Destination Devices
	Automatic Synchronization
	Synchronization Scenarios

	Multiple-Device Synchronization Using USB or PXI Devices
	Acquire Synchronized Data Using USB Devices
	Synchronize Counter Outputs from Multiple Devices
	Synchronize DSA PXI Devices Using AutoSyncDSA
	Acquire Synchronized Data Using PXI Devices

	Synchronize with PFI on CompactDAQ Chassis Without Terminals
	Multiple-Chassis Synchronization with CompactDAQ Devices
	Synchronize DSA Devices
	PXI DSA Devices
	Hardware Restrictions
	PCI DSA Devices
	Synchronize DSA PCI Devices
	Handle Filter Delays with DSA Devices

	Transition Your Code to New Interfaces
	Transition Your Code from Session to DataAcquisition Interface
	Transition Common Workflow Commands
	Acquire Analog Data
	Use Triggers
	Initiate an Operation When Number of Scans Exceeds Specified Value
	Analog Output Generator Code

	Functions
	addbidirectional
	addclock
	addinput
	addoutput
	addtrigger
	binaryVectorToDecimal
	binaryVectorToHex
	daq
	daqhelp
	daqlist
	daqreset
	daqvendorlist
	DataAcquisition
	decimalToBinaryVector
	disableVendorDiagnostics
	enableVendorDiagnostics
	flush
	hexToBinaryVector
	preload
	read
	readwrite
	removechannel
	removeclock
	removetrigger
	resetcounters
	start
	stop
	write

	Apps
	Analog Input Recorder
	Analog Output Generator

	Blocks
	Analog Input
	Analog Output
	Analog Input (Single Sample)
	Analog Output (Single Sample)
	Digital Input (Single Sample)
	Digital Output (Single Sample)

	Troubleshooting Your Hardware
	Troubleshooting Tips
	Find Devices and Create a DataAcquisition Interface
	Is My NI-DAQ Driver Supported?
	Why Doesn’t My NI Hardware Work?
	Why Was My DataAcquisition Deleted?
	Cannot Find Hardware Vendor
	Cannot Find Devices
	What Is a Reserved Hardware Error?
	Network Device Appears Unsupported
	ADC Overrun Error with External Clock
	Cannot Add Clock Connection to PXI Devices
	Cannot Complete Long Foreground Acquisition
	Cannot Use PXI 4461 and 4462 Together
	Cannot Get Correct Scan Rate with Digilent Devices
	Cannot Simultaneously Acquire and Generate with myDAQ Devices
	Simultaneous Analog Input and Output Not Synchronized Correctly
	Counter Single Scan Returns NaN
	External Clock Will Not Trigger Scan
	Why Does My S/PDIF Device Time Out?
	MOTU Device Not Working Correctly

	Contact MathWorks for Technical Support

	Hardware Limitations by Vendor
	Limitations by Vendor
	National Instruments Hardware Limitations
	Digilent Analog Discovery Hardware Limitations
	Measurement Computing Hardware Limitations
	Analog Devices ADALM1000 Limitations
	Examples by Vendor
	Analog Devices ADALM1000 Examples
	Digilent Analog Discovery Hardware Examples
	Measurement Computing Hardware Examples
	National Instruments Hardware Examples
	Getting Started and Device Discovery
	Analog Input and Output
	Digital Input and Output
	Counters and Timers
	Simultaneous and Synchronized Operations
	Simulink Data Acquisition

	Windows Sound Card Examples

